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We calculate the energy and heat capacity of a liquid on the basis of its elastic properties and vibrational
states. The experimental decrease of liquid heat capacity with temperature is attributed to the increasing loss of
two transverse modes with frequency ��1 /�, where � is liquid relaxation time. In a simple model, liquid heat
capacity is related to viscosity and is compared with the experimental data of mercury. We also calculate the
vibrational energy of a quantum liquid, and show that transverse phonons cannot be excited in the low-
temperature limit. Finally, we discuss the implications of the proposed approach to liquids for the problem of
glass transition.
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I. INTRODUCTION

Heat capacity is one of the most important physical prop-
erties of a system because it holds information about its de-
grees of freedom. Heat capacity is well understood in gases
and solids. Liquids, on the other hand, remain an exception,
with the result that their heat capacity is often barely dis-
cussed in classic statistical physics text books1 or texts dedi-
cated to liquids.2–7 The general difficulty in calculating the
energy and other thermodynamic quantities of a liquid is
that, unlike a gas, it has strong interactions, but at the same
time does not have small atomic vibrations as a solid.1 Be-
cause the intermolecular interactions in a liquid are strong,
the properties of this interaction, and, therefore, properties of
the liquid, are strongly system dependent.1 Consequently, it
is argued that no general recipe for calculating the energy of
a liquid can exist.1

Experimental data from many elemental liquids show that
their constant-volume heat capacity, Cv, decreases with tem-
perature, from about 3N at the melting point to �2–2.5�N at
high temperature.8,9 Here, N is the number of particles and
kB=1. The decrease of Cv is also seen in many complex
liquids.10 This behavior is not understood in a consistent
framework similar to those that exist for solid and gas
phases.

Most calculations of liquid energy, E, approach a liquid
from the gas phase, and calculate the potential energy in
addition to the gas kinetic energy, giving E=K+U, where K
is the kinetic energy of an ideal gas �K=3NT /2� and U is the
potential energy of interatomic interactions.1–3,5 The simplest
treatment assumes the case of a dilute system with only pair
interactions. Assuming that the interactions are weak �except
at short separations�, the high-temperature expansion gives
the system described by the van der Waals equation.1 While
this approach can describe a dense gas or a liquid close to the
critical point, it is not adequate for real liquids. For example,
Cv of the van der Waals is equal to that of an ideal gas,1 in
contrast with the experimental results. The improved calcu-
lations of U employ higher-order �three-and four-� particle
correlations.5 The results, however, are not straightforward to
use for numerical estimates5 and require the knowledge of
correlation functions as well as the properties of interatomic
interactions.

A distinctly different, and less common, approach to dis-
cuss the energy and heat capacity of a liquid is to include the
strong interactions from the outset, by approaching a liquid
from the solid phase. The temperature-dependent term of the
energy of a solid is given by the phonon energy. In an iso-
tropic solid �glass� all vibrations can be represented by one
longitudinal and two transverse waves. In classical case, this
gives the heat capacity of Cv=3N, the Dulong-Petit result.
The discussion then proceeds to establish how this result
needs to be modified on transition from the solid to the liquid
phase. Therefore, this approach accounts for the strong inter-
actions in a liquid from the outset. In this sense, it is opposite
to the approach that starts with the energy of an ideal gas and
introduces interactions as a correction.

In this approach, Brillouin modified the solidlike result,
Cv=3N, by assuming that a liquid does not support trans-
verse waves, and encountered an interesting contradiction.11

The total energy of a solid is E= �NT /2+NT /2�+2�NT /2
+NT /2�=3NT, where the first and the second terms give the
energy of longitudinal and transverse vibrations, respec-
tively, and NT /2 is the mean potential or kinetic energy. If a
liquid loses two transverse vibrations, their potential terms
vanish, but kinetic terms remain, and the liquid energy be-
comes E= �NT /2+NT /2�+2�NT /2�=2NT, giving Cv=2N.11

This contradicted the experimental result that liquid heat ca-
pacity at the melting point is about the same as that of crys-
tals, Cv=3N. One way to resolve the contradiction is to as-
sume that a liquid consists of small crystalline domains that
support transverse waves in some directions, giving Cv=3N,
but not in others, enabling a liquid to flow.11

Cv was also studied in molecular-dynamics simulations,
with liquid Al as a case study.12 Similar to the experiment,
the decrease of heat capacity with temperature was observed,
and was interpreted as the progressive loss of liquid shear
resistance.12

The idea that a liquid loses two transverse vibrational
modes was also used by Landau to calculate the energy of
phonon excitations in a quantum liquid at very low tempera-
ture. This gives the result that the temperature-dependent en-
ergy term of a liquid is three times smaller than that in a
harmonic solid, reflecting the fact that only one longitudinal
mode is preserved.1

More recently, liquid heat capacity has been discussed on
the basis of alternative mechanisms, including the consider-
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ation of liquid potential-energy landscape with intervalley
motions.9

In this paper, we propose that energy and heat capacity of
liquids can be understood on the basis of their solidlike elas-
tic properties. In particular, we discuss how the idea of re-
laxation time � can be used to describe liquid vibrational
states by approaching them from the solid phase. The experi-
mentally observed decrease of liquid heat capacity with tem-
perature is attributed to the increasing loss of two transverse
waves with frequency ��1 /�. In a simple model, we relate
liquid heat capacity and viscosity, and compare this relation
with the experimental data of mercury. In addition, we cal-
culate the vibrational energy of a quantum liquid, and show
that transverse phonons cannot be excited in the low-
temperature limit. Finally, we discuss the implications of the
proposed approach to liquids for the problem of glass tran-
sition.

II. EXPERIMENTAL EVIDENCE FOR PROPAGATING
MODES IN LIQUIDS

The existence of dispersion relations and the ability to
support propagating shear modes have been traditionally as-
signed to solids. Relatively recently, experiments have
shown that these features also exist in liquids, with the evi-
dence coming primarily from inelastic x-ray, neutron, and
Brillouin scattering experiments. In this section, we briefly
recall some of these results.

Early experiments detected the presence of propagating
modes in liquids, in the form of “dispersion curves” at high
frequency, at the temperature around melting.13 Later, the
measurements were extended to temperatures considerably
above the melting point, and confirmed the existence of col-
lective excitations in many liquids �see, for example, Refs.
14–17�. As reviewed recently, it is now well established that
dynamics in liquids shows solidlike character, in that liquids
can sustain high-frequency propagating modes down to
wavelengths on the atomic scale, with solidlike dispersion
relations.16

The solidlike ability of a liquid to support high-frequency
shear waves considerably above the melting point was di-
rectly observed some time ago.17 In addition, the ability to
support shear waves has been inferred from the widely ob-
served “positive dispersion,” the increase of high-frequency
sound velocity over that expected on the basis of
hydrodynamics.14–16 The general explanation of this effect is
that at high frequency, a liquid responds elastically to shear
stress, developing an ability to support solidlike shear vibra-
tions, in addition to longitudinal ones. As a result, the propa-
gating speed starts approaching that in a solid, i.e., increases.
Initially, these observations were made close to the melting
point, and were attributed to the proximity of solid phase.
However, later experiments found positive dispersion at tem-
peratures considerably above the melting point, confirming
the general idea that liquids support solidlike shear waves at
high frequencies that extend down to microscopic
wavelengths.16

III. VIEW OF A LIQUID FROM THE SOLID PHASE:
RELAXATION TIME

Relaxation time of a liquid was phenomenologically in-
troduced by Maxwell in the viscoelastic picture of flow.18

This picture is based on the assumption that deformation of a
liquid in response to stress can be interpolated as the sum of
elastic and viscous terms, giving

dvx

dy = 1
G

dPxy

dt + 1
� Pxy, where

Pxy, G, and � are shear stress, shear modulus, and viscosity,
respectively, and the first and the second terms represent
elastic and viscous response, respectively. When external
motion stops, vx=0, stress relaxes as P= P0 exp�−t /��, where
�=� /G is the Maxwell shear relaxation time.

Frenkel offered microscopic interpretation of � as the time
between elementary rearrangement processes in a liquid.2 He
started the discussion with the contradiction of essentially
the same origin as encountered by Brillouin; on one hand, in
order to explain the solidlike value of heat capacity in liquids
at the melting point, Cv=3N, thermal motion in liquids
should be considered to be solidlike, i.e., vibration around
fixed positions. On the other hand, this picture contradicts
fluidity of liquids. Frenkel reconciled the contradiction by
introducing � as the time between consecutive atomic jumps
from one equilibrium position to another in a liquid. If � is
large compared with the period of atomic vibrations, a liquid
is characterized by vibrational states as a solid, giving Cv
=3N. If, at the same time, � is small compared with time t
during which an external force acts on a liquid, usual liquid
flow takes place. If, on the hand, � is large compared with t,
a liquid responds to an external force elastically as a solid.
Hence the elastic and viscous regimes correspond to ���1
and ���1, respectively, where � is the frequency of exter-
nal force. This can be further illustrated by considering an
external force F=A exp�i�t�, for which Maxwell’s interpo-
lation gives

dvx

dy = 1
� �1+ i���F, hence ���1 and ���1 cor-

respond to elastic and viscous response, respectively.
In this picture, Frenkel arrived at an important conclusion

about how the liquid state can be viewed and discussed. He
proposed that a liquid should be viewed as an essentially
elastic medium, in which elasticity is “masked” by fluidity at
times larger than � �see Ref. 2�.

In this approach, Frenkel proposed to consider its vibra-
tional states using the following continuity argument. The
solid vibrational energy is calculated for an isotropic solid,
glass, and is expressed in terms of normal modes.1 Frenkel
noted that in his picture of liquid flow, no qualitative distinc-
tion can be made between a glass and a liquid: a solid glass
is different from a liquid by the value of � only �see Ref. 2�.
Because the transition between a liquid and a glass is con-
tinuous, vibrational states of a liquid just above the glass
transition temperature should not substantially change from
those of a glass.2 This argument points to the continuity of
vibrational states between a solid and a liquid, and offers an
important insight into a liquid from the solid phase.

IV. RELAXATION TIME AND VIBRATIONAL STATES
IN A LIQUID

At the phenomenological level, two ways to incorporate �
into the existing theories have been proposed. The first one
starts from a solid phase and modifies elasticity equations.
This gives rise to frequency-dependent elastic moduli, which
are interpolated between zero at ���1 and their solid-state
value at ���1.2 Another way is to start from a liquid phase,
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and to modify the hydrodynamic equations, by either directly
introducing Maxwell viscoelastic term in the Navier-Stokes
equation,2 or by introducing the exponential decay, with � as
decay time, of the memory function of current correlations.4

As reviewed recently, the microscopic understanding of
liquid dynamics is still lacking.16 Because elasticity and hy-
drodynamics describe a system at length scale that is large
compared to interatomic separations, these approaches do
not address the microscopic effects of relaxation: elementary
relaxation processes in a liquid are local atomic jumps.19

Other disadvantages of the phenomenological description
have been discussed in Ref. 16. An open question remains as
to how can the liquid ability to sustain �lose� transverse
modes with frequency ��1 /� ���1 /�� be explained at the
atomistic level, similar to the normal-mode analysis in a
solid? We propose that one way to understand the absence of
propagating shear modes with frequency ��1 /� in a liquid
at the atomistic level is to note that local atomic rearrange-
ment processes effectively break some of the interactions
between neighboring atoms and stop wave propagation.

A local structural rearrangement involves a jump of an
atom from its cage, with subsequent relaxation of the local
structure.19 We call these rearrangements local relaxation
events �LREs�. Let us consider how periodic transverse mo-
tion of atom i in a liquid affects the neighboring atom j. Let
us assume that atom i is vibrated with period �0 in the direc-
tion perpendicular to the line connecting i and j, exciting a
shear wave, and consider that atom j is involved in a LRE
with a period �. If atom i vibrates with period �0��, its
displacement does not affect atom j, because during time �0
atom j has independently jumped many times due to
thermally-excited LRE. In this case, the wave does not
propagate. If, on the other hand, �0��, atom i has enough
time to interact with atom j between two consecutive LREs
at site j �atom j is frozen on the time scale of atom i�. In this
case, the displacement of atom i affects atom j in the same
way as in a solid, and the wave propagates. If the vibration of
atom i is the superposition of modes with different frequen-
cies, we find that modes with frequency ��1 /� ���1 /��
can �cannot� propagate in a liquid.

We note that this discussion applies to volume-conserving
shear waves. Low-frequency longitudinal �hydrodynamic�
waves propagate in the presence of LREs as well, which is
related to the existence of the finite zero-frequency bulk
modulus in liquids �zero-frequency shear modulus in liquids
is zero by definition�. We also note that both high-frequency
longitudinal and transverse waves are subject to some damp-
ing, but the damping of shear waves with frequency �
�1 /� is so large that it is impossible to talk about their
propagation.2 Damping decreases with �� in the ���1 re-
gime for longitudinal and shear waves, and increases with ��
in the ���1 regime for longitudinal waves.2

In this picture, as we approach a liquid from the solid
phase, LREs modify the solid vibrational spectrum by effec-
tively removing the restoring force �or force constants� for
shear modes at frequency ��1 /�. As a result, the oscillatory
motion starts to “slip” at low frequency, giving rise to diffu-
sion due to LREs. On temperature increase, the emergent
diffusive motion due to LREs contributes to the increased
kinetic energy of the system K=3NT /2. On the other hand,

we can assume that the contribution of the emergent diffu-
sive motion to the potential energy is small. Let us increase
the system temperature T by a small amount �T, correspond-
ing to a certain new value of �. As restoring forces for shear
modes with frequency ��1 /� are removed, atoms start slip-
ping and diffusing along the same directions at which they
oscillated in the presence of restoring forces at temperature T
�albeit with larger displacements�. Note that interatomic in-
teractions that give rise to the restoring forces at temperature
T and interactions experienced by the newly diffusing atoms
at temperature T+�T have the same microscopic origin.
Therefore, the absence of restoring forces at frequency
��1 /� means that the emergent diffusive motion weakly
contributes to the system’s potential energy: a large value of
this contribution would imply strong interactions at fre-
quency ��1 /� and, therefore, the existence of restoring
forces and shear modes with this frequency. Hence, the con-
tribution of the potential energy of the emergent diffusive
motion to the total energy is small compared to other energy
terms �the potential energy of the unmodified longitudinal
mode and the kinetic energy K�, and can be ignored.

V. LIQUID ENERGY

The glass transition temperature Tg is defined from the
condition ��Tg�=103 s.19 Above Tg, each atom participates
in the vibrational motion during time � and in the diffusional
motion when it jumps between two equilibrium positions.
The instantaneous liquid energy, Eins, is the sum of the vi-
brational, Evib, and the diffusional, Edif, components:

Eins = Evib + Edif. �1�

Within thermal fluctuations, Eins is equal to the liquid energy
averaged over time t��.

Let us now approach the liquid from the solid phase as
discussed in Sec. IV. In the solid glass phase at T	Tg, Edif
=0, and the energy is purely vibrational and consists of ki-
netic and potential energy of the oscillatory motion. Let us
assume that the temperature is instantaneously raised, corre-
sponding to a certain value of ����Tg� in the equilibrium
state. As discussed in Sec. IV, the effect of local rearrange-
ment processes is to effectively remove the potential-energy
component that give rise to the restoring force for two trans-
verse modes with frequency ��1 /�. The energy of such
instantaneously prepared state, E, is the sum of the kinetic
energy, K, the potential energy of one longitudinal mode, Ul,
and the potential energy of two shear modes of frequency
��1 /�, Ut���1 /��:

E = K + Ul + Ut�� � 1/�� . �2�

We now let the system evolve until the equilibrium state
is established. In the equilibrium state, E becomes the energy
of vibrating and diffusing atoms. From the energy conserva-
tion, the energies of the initial and the final state are the
same: E=Eins. Hence, we can use Eq. �2� to calculate the
liquid energy.

Because K=Kl+Kt, where Kl and Kt are the kinetic ener-
gies of longitudinal and transverse modes, E=El+Kt+Ut��
�1 /��, where El is the energy of the longitudinal mode. If Et
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is the energy of the transverse mode, Kt=Ut=
Et

2 from the
equipartition theorem. Because the equipartition theorem ap-
plies to the energy of a single oscillator as well as to the sum
over any set of oscillators, Ut���1 /��=

Et���1/��
2 . Then, E

=El+
Et

2 +
Et���1/��

2 . Et can be written as the sum over modes
below and above �=1 /�, Et=Et���1 /��+Et���1 /��,
where the two terms refer to their solid-state values. Then,

E = El + Et�� � 1/�� +
Et�� � 1/��

2
. �3�

The first two terms in Eq. �3� are the vibrational energies
of one longitudinal mode and two transverse modes with
frequency ��1 /�. In the solid glass phase, where � is very
large, these two terms become the vibrational energy of the
system, and the last term is zero. On increasing the tempera-
ture in a liquid, the second term decreases. The last term
ensures that the total kinetic energy of the system does not
change as a result of this decrease; the kinetic energy is
defined by temperature only �K=3NT /2� regardless of how it
partitions into vibrational and diffusional motion.

To calculate the first two terms in Eq. �3�, we separate N
longitudinal and 2N transverse normal modes with frequency
��1 /� in the statistical sum of the vibrational motion:

Z = h−3N� exp�−
1

2T
�
i=1

N

�pi
2 + �li

2qi
2��dpdq


� exp�−
1

2T
�

�ti��0

2N

�pi
2 + �ti

2qi
2��dpdq , �4�

where �li and �ti are frequencies of longitudinal and trans-
verse vibrations and �0=1 /�. This gives Z=Zl ·Zt���1 /��
= �2�T�N��i=1

N �li�−1
 �2�T�N1���ti��0

2N �ti�−1, where Zl and
Zt���1 /�� are the contributions to Z due to the longitudinal
mode and the transverse modes with frequency ��1 /�, re-
spectively, and N1 is the number of transverse modes with
���0. The corresponding energies are El=T2 d

dT ln�Zl�=NT
and Et���1 /��=T2 d

dT ln�Zt���1 /��	=N1T. This gives the
first two terms in Eq. �3�.

N1 can be calculated from the density of states in the
Debye model. Recall that in an isotropic solid �glass�, vibra-
tional density of states is written as g���= V

2�2 � 1
cl

3 + 2
ct

3 ��2,
where cl and ct are longitudinal and transverse sound
velocities.1 The Debye frequency �m is defined from the con-
dition 
0

�mg���d�=3N, where N is the number of atoms in
the system. If the mean speed of sound is introduced as 3

c̄3

= 2
ct

3 + 1
cl

3 , the density of states becomes g���= 9N�2

�m
3 , where

�m
3 =6�2Nc̄3 /V.1 Instead of �m, let us define transverse De-

bye frequency, �mt, using the condition 
0
�mtgt���d�=2N,

which reflects the fact that 2N degrees of freedom are asso-
ciated with transverse vibrations. Here, gt���= V

2�2
2
ct

3 �2 is the
density of states of transverse vibrations. This gives �mt

3

=6�2Nct
3 /V and gt���= 6N

�mt
3 �2. Then, N1=
�0

�mtgt���d�

=2N�1− �
�0

�mt
�3	, and the vibrational energy of one longitudi-

nal and two transverse modes with frequency ��1 /� be-
comes Evib=El+Et���1 /��= �N+N1�T=NT�3−2�

�0

�mt
�3	.

To calculate the last term in Eq. �3�, we note that similarly
to Et���1 /��=N1T, Et���1 /��=N2T, where N2 is the
number of transverse modes with ���0. Because N2=2N

−N1, N2=2N�
�0

�mt
�3. Then, E= �N+N1+N2 /2�T, giving

E = NT�3 − � �0

�mt
�3� �5�

Equation �5� predicts the relationship between the energy
of a liquid and its relaxation time �=1 /�0. The first term in
Eq. �5� is the classical energy of a solid. The second term is
the contribution to the energy due to local rearrangement
processes in a liquid. According to Eq. �5�, liquid energy is
equal to the solid-state value of 3NT in the very broad range
of relaxation time �. This range starts from the experimen-
tally accessible �=103 s, and continues up to the Debye vi-
brational period of �D=10−13 s. Only when �0 becomes of
the order of Debye frequency, liquid energy and heat capac-
ity start decreasing from their solid-state values. Hence, Eq.
�5� predicts that this decrease should start in low-viscous
liquids not far above their melting point. This agrees with
experiments on liquid Hg, K, Na, and other systems.8,9 If
�0=�mt1 /�D, Eq. �5� gives the lower limit of the energy
of a simple monatomic liquid of 2NT. This is the result that
Brillouin obtained under the assumption of the complete loss
of transverse modes.11

The reason why the energy of a liquid is equal to the
solid-state value of 3NT unless �0 is comparable to the De-
bye frequency can also be discussed on the basis of Eq. �1�.
At any given moment of time, the number of particles in the
transient diffusional state, Ndif, is Ndif=N0 exp�−V /T�, where
V is an activation barrier for a LRE �V can be temperature
dependent� and N0 is the total number of atoms. Because �

=�D exp�V /T� �see Ref. 2�,
Ndif

N0
=

�D

� . When ���D, Ndif /N0

�1, i.e., most of the particles in the system are vibrating,
and only a negligibly small proportion of particles are dif-
fusing. When Ndif /N0�1, the contribution to the energy
from diffusion can be ignored in Eq. �1�, giving Eins=Evib. As
we have seen above, the vibrational energy, Evib= �N+N1�T
=3NT when ���D, i.e., the same as in the solid. This point
will be discussed below for its implications for the problem
of glass transition.

VI. HEAT CAPACITY

From Eq. �5�, cv= 1
N

dE
dT is:

cv =
d

dT
�T�3 − � �mtG�

�
�3�� �6�

where �mt is the Debye period for transverse vibrations, �mt
�D, � is viscosity, and we used the Maxwell relation �
=�G� �G� is instantaneous shear modulus� in order to di-
rectly relate cv and viscosity. Note that Eq. �6� relates heat
capacity and viscosity with no fitting parameters, because
�mtG� is given by the liquid properties.

Mercury is an appropriate liquid to test the prediction of
Eq. �6� for a number of reasons: it is a simple monatomic
liquid, anharmonic effects in mercury are small9 �note that
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thermal expansion is ignored in our discussion�, and finally,
it is a low-viscous liquid, which makes it possible to observe
the decrease of heat capacity in a reasonable temperature
range: as discussed above, this is expected to take place
when �0 becomes of the order of Debye frequency.

We have taken measurements of cv of mercury from Ref.
8, which has electronic contribution subtracted, hence giving
heat capacity due to ions only. Viscosity data were taken
from Ref. 20, and interpolated in order to use in Eq. �6� to
calculate cv. Because viscosity shows the deviation from the
Arrhenius behavior, we used the Vogel-Fulcher-Tammann
expression to fit the data, �=�0 exp�A / �T−T0�	. A good fit
was achieved with �0=0.612
10−3 Pa s, A=235.157 K,
and T0=40.726 K �see Fig. 1�a�	. Because the experimental
temperature range of viscosity is 250–600 K,20 slightly
smaller than the experimental temperature range of cv, 234–
754 K,8 we used the fitted expression to extrapolate viscosity
data in the temperature range of cv �see Fig. 1�.

Equation �6� has no fitting parameters, hence there is no
flexibility to fit its prediction to the experimental curve of cv.
However, because �mt and G� are not known precisely for
mercury, in practice we can use �mtG� as a fitting parameter.
In Fig. 1�b�, we compare cv, calculated from Eq. �6�, with the
experimental data, using �mtG�=0.55
10−3 and 0.57

10−3 Pa s. Given that the experimental error of cv is 0.1–
0.2 J/K �Ref. 8� �experimental error of viscosity is not
known�, we find a good agreement between the calculated
and experimental cv.

It is important to note that the used value of �mtG� in Fig.
1�b� gives physically sensible values for �mt and G�; if G� of

mercury is about 5 GPa,21 the used values of �mtG� imply �mt
of about 0.1 ps, a typical value of Debye vibrational period.
We also note that the used value of �mtG� is close to that in
other liquids; in sodium, for example, the product of high-
temperature � and G� is about 0.5
10−3 Pa s.14 We can
therefore conclude that the decrease of cv follows, within the
experimental error, the decrease of viscosity reasonably well,
with physically realistic values of �mt and G�.

VII. VIBRATIONAL ENERGY OF A QUANTUM LIQUID

In most liquids, crystallization or vitrification takes place
at low temperature. However, if a liquid state exists at low
temperature, quantum effects become important. Below we
calculate the effect of relaxation process on the vibrational
energy of a quantum liquid, Evib.

We first note that in considering the phonon excitations in
a quantum liquid at very low temperature, Landau assumed
that these are due to the longitudinal phonons only.1 The
vibrational energy is then three times smaller than that of a
quantum solid, reflecting the assumption that excitations due
to two transverse modes are completely lost.1 At first glance,
the discussion in Secs. III and IV is at odds with this assump-
tion. Indeed, we have discussed that transverse waves with
frequency ��1 /� propagate in liquids, and their frequency
range only increases at low temperature. We have seen that
transverse waves disappear at high temperature only,
whereas neglecting them at low temperature gives, in classi-
cal case, Cv=2N, inconsistent with the experiments. Interest-
ingly, we show that transverse waves cannot be excited in a
quantum liquid in the low-temperature limit, confirming the
Landau assumption.

In a quantum solid, Evib is the sum of energies of quantum
oscillators, represented by one longitudinal and two trans-
verse modes. In a quantum liquid, Evib is the sum of energies
of one longitudinal and two transverse modes with frequency
��1 /�. As in the Debye model of a solid, the summation
over the phonon frequencies can be substituted by integra-
tion using the Debye density of states.1 Similar to �mt intro-
duced previously in the density of states of transverse vibra-
tions, gt���= 6N

�mt
3 �2, we define the Debye longitudinal

frequency, �ml, from the condition 1
ct

3
V

2�2 
0
�ml�2d�=N, which

reflects the fact that N degrees of freedom are associated
with longitudinal vibrations. This gives �ml

3 =6�2Nct
3 /V, and

the density of states of longitudinal vibrations, gl���
= V

2�2 �2 1
cl

3 = 3N
�ml

3 �2. Evib becomes

Evib = E0 +
3N

�ml
3 �

0

�ml

E��T��2d� +
6N

�mt
3 �

�0

�mt

E��T��2d� ,

�7�

where E0 is the energy of zero-point vibrations and E��T�
= �

exp��
T

�−1
, giving

Evib = E0 + NTD��ml

T
� + 2NTD��mt

T
�

− 2NT� �0

�mt
�3

D��0

T
� , �8�

where D�x�= 3
x3 
0

x z3dz
exp�z�−1 is the Debye function.1
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FIG. 1. �a� Circles are experimental data of viscosity of mercury,
line is the fit and extrapolation using the Vogel-Fulcher-Tammann
formula; �b� solid line is the experimental cv for mercury. Dashed
lines are calculated values, using �mtG� of 0.55
10−3 Pa s �top�
and 0.57
10−3 Pa s �bottom�.
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The first three terms in Eq. �8� is the vibrational energy of
a quantum solid, obtained from Eq. �7� if �0=0. The last
term in Eq. �8� is the contribution from the relaxation process
in a liquid. In the high-temperature limit, when D�x�=1, Evib
becomes the vibrational energy of a classical liquid that fol-
lows from Eq. �4�.

The low-temperature limit of the Debye model corre-
sponds to the large value of the argument of D�x�, so that
neglecting exponentially small terms, D�x�= �4

5x3 and Evib

�T4.1 In Eq. �8�, this takes place when
�0

T �1 �which also
implies

�mt

T �1, because �0��mt�. When D�x��
1
x3 , the last

two terms in Eq. �8� disappear for any �0, corresponding to
the complete loss of excitations due to transverse waves.
This can be understood because at temperature T, only
phonons with frequency �	T are excited and contribute to
E� and the temperature-dependent energy terms in Eq. �7�.
Hence, in the low-temperature limit �0�T, only phonons
with frequency ���0 are excited, but transverse phonons
with this frequency are excluded from Eq. �7�. As a result,
transverse modes cannot be excited in a liquid in the low-
temperature limit, and all excitations in the system are due to
the longitudinal phonons only.

Because the last two terms in Eq. �8� also disappear at
high T when �0=�mt, Evib in these two terms have a maxi-
mum at a certain intermediate temperature, which depends
on how �=1 /�0 changes with T. It would be interesting to
study the implications of this result in more detail.

VIII. IMPLICATIONS FOR GLASS TRANSITION

There are two implications of the discussed picture for the
long-standing problem of glass transition.19,22,23 The first one
concerns the general approach to glass transition from a liq-
uid state. Basic discussions of liquids begin with stochastic
dynamics, which describes Brownian motion and self-
diffusion, and is modeled by Langevin-type and related
equations.4,6,7 These approaches assume stochastic dynamics,
corresponding to the regime ��D. To discuss glass transi-
tion, the formalism is then modified so that is can be ex-
tended to the supercooled state where ���D and eventually
to the glass phase where ��Tg�=103 s. The important point
here is that the condition ���D holds in 15 decades of �
�10−12–103 s�. In this range of �, the system is a liquid as
follows from its inability to support static shear stress on
experimental time scale, i.e., it flows, yet its main properties
are those of a solid. First, as discussed above, the liquid
energy is equal to the vibrational energy of a solid in the
range of 15 decades of �. Second, a liquid supports solidlike
shear modes with frequencies ��1 /� which can also span
up to 15 orders of magnitude depending on �. Hence, in
almost entire glass transformation range, the important prop-
erties of a liquid are governed by its solidlike elastic features.
This suggests that a glass transition theory can include the
solidlike elastic properties of a liquid from the outset, rather
than modify and extend the stochastic high-temperature be-
havior �where these properties are absent� to the supercooled
liquid state and glass. Basing on this view, we have recently
proposed how glass transition can be understood on the basis
of liquid elasticity.24

The second implication concerns the behavior of liquid
heat capacity at Tg. Opposite to the increase of cv on lower-
ing the temperature in Fig. 1, constant-pressure heat capacity
decreases at Tg, often with a jump, �cp.19,22,23 It is therefore
important to discuss how the two effects can be reconciled.
Several popular theories of glass transition relate �cp at Tg to
the reduction of the liquid configurational entropy and to an
underlying phase transition.19 This approach has been con-
vincingly criticized for a number of reasons.19 We propose
that �cp at Tg can be understood as a kinetic effect related to
the nonequilibrium nature of glass transition, rather than to
the presence of an underlying phase transition. Hence, this
effect is different from the one that governs liquid heat ca-
pacity in Eq. �6�: recall that we related liquid heat capacity to
the liquid equilibrium vibrational states.

�cp at Tg can be understood from the disappearance of
LREs at Tg. The presence of these processes in a liquid �or
their absence in a glass� has a profound effect on several of
important properties of the system. First, LREs are accom-
panied by the increases of local volume. This is because the
energy needed for an atom to escape its cage at the constant
volume is very large due to strong short-range interatomic
repulsions. Hence, atoms in the cage need to increase its
volume in order to allow for the escape of the central
atom.2,19 Because Tg is defined from the condition of disap-
pearance of LREs on the experimental time scale, thermal
expansion is larger �smaller� above �below� Tg. This gives
rise to the experimentally observed kink of density at Tg,25

and contributes to the jump of cp at Tg. Second, because
LREs are accompanied by fluctuating local volume in-
creases, they result in a faster softening of the high-
frequency elastic constants of a liquid as compared to a
glass, as witnessed by the kink of the high-frequency longi-
tudinal and transverse sound velocities.26,27 This introduces a
difference in the compressibility between a liquid and a glass
at Tg, and contributes to �cp. Finally, at times t��, LREs
ensure that the configurational entropy of the system, sc, is
equal to the “entropy of melting” associated with the in-
crease of the number of configurations of a liquid over that
of a solid.3 If LREs are frozen at Tg, the change of sc con-
tributes to �cp.

Importantly, small variations of temperature around Tg
give large changes of �, leading to the freezing of LREs in a
very narrow temperature range and therefore giving rise to
the observed apparent jump of cp. Generally, this is because
at Tg, the activation barrier for LREs, V, is very large: be-
cause �=�D exp�V /T� and ��Tg�=100–1000 s, V /Tg
=35–37. Moreover, in “fragile” liquids,22 i.e., liquids with
large slope of ln��� vs Tg /T at Tg, small variations of tem-
perature around Tg, �T, result in a large change of �. Take,
for example, propylene carbonate, for which relaxation time
follows the Vogel-Fulcher-Tammann law, �=�D exp�A / �T
−T0�	 with parameters A=612 K, T0=139 K, and log��D�
=−12.3 s.28 The conditions ��Tg�=100 s and ��Tg−�T�
=1000 s give Tg157.6 K and �T1.2 K, i.e., the de-
crease of temperature at Tg by only 1.2 K gives a tenfold
increase of �. Similarly, for several other fragile liquids,28 we
find that the variations of �T= � �1−2� K at Tg result in the
variations of � by an order of magnitude.

This picture predicts that no �cp would have been ob-
served had the experiment lasted for time t��. This is con-
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sistent with the general finding that the observed anomalies
at Tg depend on cooling rate and observation time. Another
prediction of this picture is that �cp at Tg should be sharp in
fragile, but not in “strong” liquids, which have a smaller
slope of ln��� vs Tg /T at Tg. This is consistent with the
experimental results.22 To summarize, �cp can be understood
as a natural signature of the glass transition insofar as this
transition is defined by the freezing of LREs at the experi-
mental time scale, but not as a result of a phase transition.

IX. CONCLUSIONS

In summary, we discussed the solidlike elastic properties
of liquids, including its vibrational states, energy, and heat

capacity. The decrease of liquid heat capacity with tempera-
ture was attributed to the increasing loss of two transverse
modes with frequency ��1 /�. In a simple model, we re-
lated liquid heat capacity and viscosity, and compared this
relation with the experimental data of mercury. We also cal-
culated the vibrational energy of a quantum liquid, and
showed that transverse phonons cannot be excited in the low-
temperature limit. Finally, we discussed the implications of
the proposed approach to liquids for the problem of glass
transition.
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