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Universal lower bounds on energy and momentum diffusion in liquids
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Thermal energy can be conducted by different mechanisms including by single particles or collective excita-
tions. Thermal conductivity is system-specific and shows a richness of behaviors currently explored in different
systems, including insulators, strange metals, and cuprate superconductors. Here, we show that despite the
seeming complexity of thermal transport, the thermal diffusivity α of liquids and supercritical fluids has a lower
bound that is fixed by fundamental physical constants for each system as αm = 1

4π

h̄√
mem , where me and m are

electron and molecule masses. The newly introduced elementary thermal diffusivity has an absolute lower bound
dependent on h̄ and the proton-to-electron mass ratio only. We back up this result by a wide range of experimental
data. We also show that theoretical minima of α coincide with the fundamental lower limit of kinematic viscosity
νm. Consistent with experiments, this points to a universal lower bound for two distinct properties—energy and
momentum diffusion—and a surprising correlation between the two transport mechanisms at their minima. We
observe that αm gives the minimum on the phase diagram except in the vicinity of the critical point, whereas νm

gives the minimum on the entire phase diagram.
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I. INTRODUCTION

Thermal energy can propagate by radiation, convection,
and conduction. The latter phenomenon refers to the travel
of heat in matter in the absence of particle flow. Thermal en-
ergy can be carried by phonons and electronic quasiparticles
in solids and liquids or molecular collisions in gases [1,2].
Although the two mechanisms of heat transfer by collective
excitations or particles are conceptually simple, they can in-
terestingly interact with other processes and give rise to a rich
variety of behaviors. This is currently explored in a variety of
materials, including insulators, strange metals, and cuprate su-
perconductors, where new mechanisms are invoked to explain
the experimental data (see, e.g., Refs. [3–6]). More recently,
bounds on thermal conductivity and other properties were dis-
cussed, with the view that identifying and understanding these
bounds is important for fundamental physics, predictions for
theory and experiment, as well as searching and rationalizing
universal behavior [3–13]. These bounds are based on uncer-
tainty relations and limits due to quantum physics.

Thermal conductivity is defined by the static Fourier equa-
tion, JQ = κ ∂T

∂x , where JQ is the heat current density and ∂T
∂x

is the temperature gradient in the x direction. This equation
is the thermal counterpart of the Ohm equation and defines κ

as a linear response to a static temperature gradient. Thermal
diffusivity is described by the heat equation [14,15]

∂T

∂t
= α

∂2T

∂x2
, (1)

where α = κ
ρcp

is thermal diffusivity, ρ is density, and cp is
heat capacity per mass unit. α plays the role of the diffusion
constant quantifying the propagation of thermal energy.

The transport coefficients κ and α vary in a wide range,
and they depend strongly on the system, temperature, and
pressure. Here, we consider α in liquid and supercritical states
of matter, and we show that despite these variations, α at its
minimum, αm, universally attains a value

αm = 1

4π

h̄√
mem

, (2)

where me and m are electron and molecule masses, and we
back up this result by experimental data.

We subsequently introduce the elementary thermal diffu-
sivity ι = αmm, similarly to the elementary viscosity [16],
with the universal minimum set by fundamental constants as

ιm = h̄

4π

(mp

me

) 1
2
, (3)

where mp is the proton mass.
We finally show that the theoretical minima of thermal

diffusivity coincide with the minima of a physically distinct
quantity, the kinematic viscosity νm discussed recently [16],
and that the experimental ratio νm/αm is close to 1 and is in the
range 0.4–1.7. Fundamentally, this closeness can be explained
by observing that both α and ν at their minima are governed
by the “ultraviolet” (UV) properties such as Bohr radius and
Debye frequency. This suggests a wider universality of prop-
erties at their fundamental limit. We finally observe that (i) νm

gives the minimum on the entire phase diagram of matter, and
(ii) αm gives the minimum on the phase diagram except in the
vicinity of the critical point.
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It is notable that the universal results (2) and (3) fixing the
minimum for each system apply to the liquid state. Indeed,
liquid properties are considered to be system-specific because
interactions are strong and depend on the system. This cir-
cumstance is viewed to disallow a possibility of calculating
liquid properties in general form [17]. A fundamental problem
of liquid description is related to the absence of a small pa-
rameter [18]: interactions and atomic displacements in liquids
are both large, and this combination precludes using theories
developed for gases and solids. For example, the theoretical
calculation and understanding of liquid energy and heat ca-
pacity has remained a long-standing problem in research and
teaching [19], and it started to lift only recently when a new
understanding of collective excitations in liquids came in [18].
For these reasons, there is no tractable microscopic theory of
thermal conductivity in liquids [20]. In view of these prob-
lems, the existence of universal bound for αm (2) and ιm (3) in
liquids is notable, as is the closeness of the lower bounds of αm

and νm despite the fundamental physical distinction between
energy and momentum diffusion and very different ways of
measuring α and ν.

II. RESULTS AND DISCUSSION

A. Derivation of the thermal diffusivity minimum

In this section, we derive the thermal diffusivity at its
minimum. We start our discussion with the thermal diffusivity
due to ionic motion, and we will comment on the electron con-
ductivity later. We will see that Eqs. (2) and (3) emerge from
connecting thermal diffusivity at the minimum to quantum-
mechanical properties of condensed matter phases including
the Bohr radius and Rydberg energy.

It is useful first to show the experimental data showing the
minima. We have collected available experimental data [21]
of κ in several noble (Ar, Ne, He, and Kr), molecular (N2, H2,
O2, CO2, CH4 C2H6, and CO), and network fluids (H2O). Our
selection includes industrially important supercritical fluids
such as CO2 and H2O [22]. We have calculated α = κ

ρcp
using

the experimental values of cp and ρ at respective temperatures,
and we show both κ and α in Fig. 1. For some fluids, we
show the data at two different pressures. The low pressure
was chosen to be far above the critical pressure so that the
data are not affected by near-critical anomalies. The highest
pressure was chosen to (a) make the pressure range considered
as wide as possible, and (b) be low enough in order to see
the minima in the temperature range available experimentally.
We observe that κ and α universally have minima. We also
observe that κ can have weak maxima at low temperature
related to the competition between the increase of heat capac-
ity due to phonon excitations in the quantum regime and the
decrease of the phonon mean free path l as in solids. In H2O,
the broad maximum is related to water-specific anomalies
including broad structural transformation between differently
coordinated states.

We now move to the reason why κ and α have minima
in liquids as a function of temperature. In solids, the thermal
conductivity κ can be written as κ = cvl , where c is the
specific heat per volume unit [1], v is the speed of sound, l
is the phonon mean free path, and we dropped the numerical
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FIG. 1. Experimental thermal conductivity κ (top) and ther-
mal diffusivity α (bottom) of noble, molecular, and network
liquids [21] showing minima. κ and α for Kr, O2, H2O,
CH4, C2H6, and CO are shown for pressure P = 30, 30, 70,
20, 20, and 20 MPa, respectively. κ and α for Ar, Ne, He,
N2, H2, and CO2 are shown at two pressures each: 20 and
100 MPa for Ar, 50 and 300 MPa for Ne, 20 and 100 MPa for He,
10 MPa and 500 MPa for N2, 50 MPa and 100 MPa for H2, and 30
and 90 MPa for CO2. The minimum at higher pressure is above the
minimum at lower pressure for each fluid.

factor on the order of unity. Then, the diffusion constant is
given by

α = vl. (4)

In gases, α can be written in the same way as (4), but—
and this reflects the difference between heat transfer in solids
and gases—v in (4) corresponds to the average velocity of gas
molecules and l to the molecule free path [2].

The minimum of α is due to the crossover between the
liquidlike and gaslike regimes of particles dynamics, which
we qualify below. Molecular motion in low-temperature liq-
uids combines solidlike oscillations around quasiequilibrium
positions and diffusive jumps to new positions, enabling liquid
flow. These jumps are due to temperature-induced molecu-
lar jumps over an energy barrier set by the interaction with
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other molecules, resulting in the exponential temperature de-
pendence of viscosity. The jumps are characterized by the
liquid relaxation time, τ , i.e., the average time between the
molecular jumps [23]. The collective excitations in liquids
(we refer to these as phonons or phononlike modes in a
wider sense [18]) consist of one longitudinal mode and two
transverse modes propagating above the threshold value in
k-space [18,24]. The temperature increase has two effects on
α in Eq. (4). First, the phonon mean free path l decreases.
Second, the speed of sound decreases as it does in solids.
However, the decrease of v and l cannot continue indefinitely
due to the UV cutoff in condensed matter phases: l is lim-
ited by the interatomic separation a at the Mott-Ioffe-Regel
(MIR) limit, and τ is limited by the elementary vibration
period, commonly approximated by the Debye vibration
period τD.

An important effect related to reaching the UV cutoff is that
a further temperature increase results in the qualitative change
of particle dynamics [18,25,26]. On further temperature in-
crease, the oscillatory component of molecular motion is lost,
and molecules start moving in a purely diffusive manner. At
high temperature and/or low density, molecules gain enough
energy to move a distance lp without collisions with velocity
vt , where lp is the particle mean free path and vt is the thermal
velocity. lp and vt both increase with temperature. Therefore,
α in Eq. (4) has a minimum. The same argument leading to a
minimum applies to κ = cρα. In the liquidlike regime, ρ and
c are monotonically decreasing functions of temperature [18],
hence the minima of α and κ can take place at different
temperature.

If the temperature is increased at pressure below the critical
point, the system crosses the boiling line and undergoes a
liquid-gas transition. As a result, α and κ undergo a sharp
change at the phase transition, rather than showing a smooth
minimum as in Fig. 1. To avoid the effects related to the phase
transition, we need to consider the supercritical state. Here,
the Frenkel line [18,25,26] formalizes the qualitative change
of molecular dynamics from combined oscillatory and diffu-
sive to purely diffusive. The Frenkel line touches the boiling
line slightly below the critical point and extends to arbitrarily
high temperature and pressure on the phase diagram. At suf-
ficiently high pressure and temperature, it runs nearly parallel
to the boiling line in the logarithmic (pressure, temperature)
coordinates [25]. The location of minima of different prop-
erties such as viscosity or thermal conductivity may depend
on the path taken on the phase diagram. As a result, the
minima may deviate from the Frenkel line depending on the
path [18].

Before evaluating αm, we first see how well we can es-
timate κ at the minimum, κm, using our approach. When l
becomes comparable to a at the minimum, the velocity v can
be evaluated as v = a

τD
because the time for a molecule to

move a distance a in this regime is given by the characteristic
timescale set by τD. Recalling that c featuring in κ = cvl
is the temperature derivative of energy density [1], c = cv

a3 ,
where cv is the heat capacity per atom at constant volume
(the derivative is taken at constant volume) and a−3 is the
concentration. At the minimum, cv is close to 2kB, reflecting
the disappearance of two transverse modes at the dynamical
crossover [18,24]. Setting l = a, v = a

τD
= 1

2π
ωDa, where ωD

is Debye frequency, gives

κm = 1

π

kB ωD

a
. (5)

Taking the typical values of a = 3–6 Å and ωD
2π

on the order
of 1 THz, we find κm in the range 0.05–0.09 W

mK , providing
an order of magnitude estimation of κm consistent with the
experimental minima in Fig. 1(a). This sets the stage for our
later calculation of thermal diffusivity at its minimum using
fundamental physical constants.

We note that the minimum of κ in Fig. 1(a) is lower
than thermal conductivity in low-κ solids such as SnSe (κ =
0.23 W

mK ), where it is considered as “ultralow” [27].
We also observe that high pressure reduces a and increases

ωD. Equation (5) predicts that κm increases with pressure as a
result, in agreement with the experimental behavior in Fig. 1.
We note that (4) applies in the regime where l is larger than a,
and in this sense our evaluation of the conductivity minimum
is an order-of-magnitude estimation, as are our other results
below. In this regard, we note that theoretical models can
only describe a dilute gas limit where perturbation theory ap-
plies [2], but not in the regime where l is comparable to a and
where the energy of intermolecular interaction is comparable
to the kinetic energy. In view of theoretical issues, we con-
sider our evaluation useful. In addition to being informative,
an order-of-magnitude evaluation is perhaps unavoidable if a
complicated property such as thermal conductivity is to be
expressed in terms of fundamental constants only.

We are now ready to evaluate α at its minimum, αm. As
discussed above, l at the minimum is l ≈ a. The speed of
sound v in the Debye model is v = a

τD
(at the crossover where

τ becomes comparable to the time it takes the molecule to
move a distance a and where τ ≈ τD as discussed above,
v becomes approximately equal to thermal velocity). Using
l = a and v = a

τD
= 1

2π
aωD in (4) gives

αm = 1

2π
ωDa2. (6)

The energy diffusion constant αm in (6) can now be re-
lated to fundamental physical constants by recalling that the
properties defining the UV cutoff in condensed matter can be
expressed in terms of fundamental constants [16]. For the ben-
efit of the reader and later discussion, we reproduce the brief
derivation below. Two relevant quantities are Bohr radius, aB,
setting the characteristic scale of interparticle separation on
the order of angstrom,

aB = 4πε0 h̄2

mee2
, (7)

and the Rydberg energy, ER = e2

8πε0aB
[1], setting the char-

acteristic scale for the cohesive energy in condensed matter
phases on the order of several eV:

ER = mee4

32π2ε2
0 h̄2 , (8)

where e and me are electron charge and mass.
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The characteristic phonon energy h̄ωD is related to the
cohesive energy E , h̄ωD

E , as

h̄ωD

E
=

(me

m

) 1
2
, (9)

which, up to a factor close to 1, follows from approximat-

ing h̄ωD as h̄( E
ma2 )

1
2 , taking the ratio h̄ωD

E , and using a = aB

from (7) and E = ER from (8).
Combining (6) and (9) gives

αm = 1

2π

Ea2

h̄

(me

m

) 1
2
. (10)

The parameters a and E in (10) are set by their charac-
teristic scales aB and ER as discussed earlier. Using a = aB

from (7) and E = ER from (8) in (10) gives a remarkably
simple equation for αm as in Eq. (2), which we reproduce
below for convenience:

αm = 1

4π

h̄√
mem

. (11)

Equation (11) is the main result of this paper. The same
result for αm in (11) can be obtained without explicitly using
aB and ER in (10). The cohesive energy, or the characteristic
energy of electromagnetic interaction, is

E = h̄2

2mea2
. (12)

Using (12) in (10) gives (11).
We now analyze (11) and its implications. αm contains h̄

and electron and molecule masses only. m characterizes the
molecules involved in heat transfer. me characterizes electrons
setting the intermolecular interactions. The quantum origin of
αm, signified by h̄ in (11), is due to the quantum nature of
interparticle interactions.

The mass m in (11) is m = Amp, where A is the atomic
weight and mp is the proton mass. The inverse square root
dependence αm ∝ 1√

A
interestingly implies that for different

liquids αm varies by a factor of about 10 only. Setting m = mp

(A = 1) for H in (11) [similarly to (7) and (8) derived for the
H atom] gives the fundamental thermal diffusivity in terms of
h̄, me, and mp as

αm = 1

4π

h̄√
memp

≈ 10−7 m2

s
. (13)

For the lightest element, H, Eq. (13) gives the maximal
value of αm. It is interesting to ask what quantity has an
absolute minimum. If we define the “elementary conductiv-
ity” ι (“iota”) equivalent to the elementary viscosity [16] as
ι = αmm, Eq. (11), we obtain ι = h̄

4π
( m

me
)

1
2 . ι has the absolute

minimum, ιm, for H, where m is the proton mass mp:

ιm = h̄

4π

(mp

me

) 1
2

(14)

and is on the order of h̄.
Equation (14) interestingly involves the proton-to-electron

mass ratio, one of few dimensionless combinations of fun-
damental constants of importance in a variety of areas [28].
Together with the fine-structure constant, this ratio has a

TABLE I. Theoretical (th) and experimental (exp) values for the
thermal diffusivity αm and the kinematic viscosity νm at the minima.
All the quantities are displayed in units of ×108 m2/s except for the
last ratio, which is dimensionless.

αth
m = ν th

m αexp
m νexp

m νm/αm

Ar (20 MPa) 3.4 4.5 5.9 1.3
Ar (100 MPa) 3.4 9.3 7.7 0.8
Ne (50 MPa) 4.8 6.4 4.6 0.7
Ne (300 MPa) 4.8 11.9 6.5 0.6
He (20 MPa) 10.7 9.5 5.2 0.6
He (100 MPa) 10.7 17.9 7.5 0.4
Kr (30 MPa) 2.3 4.9 5.2 1.1
N2 (10 MPa) 4.1 4.0 6.5 1.6
N2 (500 MPa) 4.1 17.8 12.7 0.7
H2 (50 MPa) 15.2 22.8 16.3 0.7
H2 (100 MPa) 15.2 27.0 19.4 0.7
O2 (30 MPa) 3.8 5.6 7.4 1.3
H2O (70 MPa) 5.1 10.7 11.9 1.1
CO2 (30 MPa) 3.2 5.4 8.0 1.5
CO2 (90 MPa) 3.2 8.1 9.3 1.2
CH4 (20 MPa) 5.4 7.9 11.0 1.4
C2H6 (20 MPa) 3.9 7.0 12.0 1.7
CO (20 MPa) 4.1 12.0 7.7 0.6

particular importance from the point of view of governing
nuclear reactions, synthesis in stars and the creation of planets,
and heavier elements including carbon. The balance between
the two dimensionless constants provides a narrow “habitable
zone” where stars and planets can form, and life-supporting
molecular structures can emerge [28].

B. Comparison to the experimental data

We now compare our bounds to experiments. In Table I we
compare αm calculated according to (11) to the experimental
αm [21] for all liquids shown in Fig. 1. The ratio between
experimental and predicted αm is in the range of about 0.9–4.
The ratio is the largest for fluids under high pressure (e.g.,
N2 at 500 MPa and Ar at 100 MPa), which our Eq. (11) does
not account for, as discussed below. For the lightest liquid,
H2, experimental αm is close to the theoretical fundamental
thermal diffusivity viscosity (13). We therefore find that (11)
predicts the right order of magnitude of αm.

We observe that α increases with pressure in Table I, sim-
ilarly to κ in Fig. 1. However, the pressure dependence is
not accounted for in αm in (11) since (11) is derived in the
approximation involving Eqs. (7)–(10), which do not account
for the pressure dependence of ωD and E .

We make three further remarks regarding the comparison
of theoretical and experimental results in Table I. First, the
important term in Eq. (11) includes the combination of funda-
mental constants that sets the characteristic scale of the lower
bound of thermal diffusivity, whereas the numerical factor
in (11) may be affected by the approximations used as dis-
cussed earlier. Second, Eqs. (7)–(9) assume valence electrons
setting strong bonding such as covalent and ionic. Thermal
conductivity of these systems in the supercritical state is un-
available due to high critical points. The available data [21]
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used in Fig. 1 and Table I include weakly bonded systems such
as molecular, noble, and hydrogen-bonded fluids. Bonding in
these systems is also electromagnetic in origin, although weak
van der Waals and dipole interactions result in smaller E and,
therefore, smaller α. However, we note that the dependence
of αm on bonding type is weak because (i) αm in (10) contains
the factor Ea2, and (ii) a is two to four times larger and E

1
2

is three to ten times smaller in weakly bonded as compared
to strongly bonded systems [29]. As a result, the order-of-
magnitude evaluation (11) is unaffected, as Table I shows.
Third, Eq. (11) for strongly bonded nonmetallic (covalent and
ionic) fluids gives a prediction for future experimental work.

The lower bound setting αm in (11) is consistent with the
uncertainty principle. As discussed earlier, the minimum of
α can be evaluated as αm = va = pa

m , where p is the par-
ticle momentum. Using the uncertainty relation applied to
a particle localized in the region set by a, αm � h̄

m . h̄
m is

smaller than αm in (11) by the factor F = 1
4π

( m
me

)
1
2 . F ≈ 22

in Ar and becomes smaller for lighter systems. Therefore, the
minimum (13) provides a stronger bound as compared to the
uncertainty relation.

An important difference of our lower bound (11) and
bounds based on the uncertainty relations in earlier discus-
sions [3–10] is that (11) corresponds to a true minimum of
thermal diffusivity, as seen in Fig. 1 (in the sense that the
function has an extremum), whereas the uncertainty relation
compares a product (px or Et) to h̄ but the product does not
necessarily correspond to a minimum of a function, and it can
apply to a monotonic function.

C. Energy and momentum diffusion

We now discuss the relationship between the minima of
α and the minima of kinematic viscosity ν, νm. Interestingly,
the question of viscosity minima was raised before. Purcell
observed [30] that “viscosities have a big range but they stop
at the same place.” In the earlier work, we have ascertained
the lower limit of kinematic viscosity in terms of fundamental
constants [16].

We plot the experimental α and ν for two noble and two
molecular liquids in Fig. 2 at the same pressure as in Fig. 1.
We observe the closeness of the minima of both properties.
This is unexpected and is surprising, in view of the fact that
the two properties are physically distinct and are measured
very differently. We compare αm and νm below in detail.

There are interesting and important similarities and differ-
ences between the two properties. The first analogy is that
Eq. (1), which describes energy diffusion, is analogous to
that determining momentum diffusion if T is replaced by the
velocity field and α is replaced by ν. Second, recall that the
minimum of thermal conductivity is due to v and l changing
from the phonon speed and phonon mean free path in the
low-temperature liquidlike regime to particle thermal speed
and particle mean path in the high-temperature gaslike regime.
The minimum of liquid viscosity is due to the crossover
between the exponential decrease of viscosity in the low-
temperature liquidlike regime η ∝ exp (U

T ) to η ∝ ρvl in the
high-temperature gaslike regime, where U is the activation
barrier for diffusive particle rearrangements, and v and l
are particle thermal speed and mean free path, respectively.

101 102 103

10-7

10-6

10-5
α, ν (m2/s)

T (K)

He

N2

Ar
CO2

FIG. 2. Experimental α (solid lines) and ν (dashed lines) for He
(20 MPa), N2 (10 MPa), Ar (20 MPa), and CO2 (30 MPa) [21].

Therefore, the temperature dependence of the thermal con-
ductivity and the viscosity is the same in the gaslike regime at
high temperature but is different in the liquidlike regime at low
temperature. Third and finally, the dominant contribution to
thermal conductivity in the low-temperature liquidlike regime
is due to phonons as in solids. In the high-temperature gaslike
regime, thermal conductivity is due to particle collisions. Vis-
cosity, on the other hand, is due to the dynamics of individual
particles and momentum they transfer in both liquidlike and
gaslike regimes. Therefore, thermal conductivity and viscosity
are set by the same process at high temperature but by differ-
ent processes at low. Consistent with this picture, Fig. 2 shows
that the temperature behavior of α and ν is more similar at
high temperature as compared to low.

Despite the above differences between α and ν, theoretical
values at their minima are the same. Indeed, we have pre-
viously shown [16] that the minima of ν (νm) are given by
Eq. (6) or Eq. (11) involving fundamental physical constants,
implying

νm = αm. (15)

Therefore, the closeness between νm and αm is explained by
observing that both α and ν at their minima are governed by
UV properties such as Bohr radius and Debye frequency in
Eq. (6).

We have calculated ν = η

ρ
using the experimental values

of viscosity η and density ρ [21] for all liquids at the same
pressure as thermal conductivity in Fig. 1, and we show the
minima of ν (νm) in the third column in Table I. We observe
that the experimental values of αm and νm are close to each
other. This agreement is also seen in the last column of Table I
where the ratio νm/αm is in the range 0.4–1.7. We note that
the temperatures of the minima of αm and νm are somewhat
different, nevertheless the closeness of αm and νm implies that
the Prandtl number, ν

α
, is on the order of 1 at temperatures

close to the minima. This is seen in the last column of Table I.
The agreement between experimental αm and νm as well

as their agreement with the theoretical estimation in the first
column in Table I importantly reinforces our analysis of the
minima and adds to its consistency.
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FIG. 3. Points show experimental αm (top) and νm (bottom) as
a function of molecular mass. The solid line is the prediction of
Eq. (11).

Our final comparison of the theoretical result and experi-
mental data concerns the inverse square-root dependence of
αm and νm: according to Eqs. (11) and (15), αm, νm ∝ 1√

m
.

Figure 3 shows the experimental αm and νm of all systems
in Table I at low pressure as a function of the molecule
mass, together with the solid line representing the theoretical
result (11). We observe a trend of both αm and νm reducing
with molecular mass. We also observe that nearly all experi-
mental plots are above the theoretical prediction of the lower
bound. We note that the inverse square-root dependence is
expected for strong electromagnetic interactions where energy
and interatomic distance do not depend on the ion mass. For
weak interactions, the energy depends on the size of the atom
or molecule [29]. This contributes to the scatter of points in
Fig. 3.

We note that the above discussion applies to systems where
the dominant contribution to thermal diffusivity is related to
the motion of ions rather than electrons [the electron mass
me enters Eq. (11) because me enters the Bohr radius (7) and
Rydberg energy (8)]. The minima of α due to electrons will be
discussed elsewhere. Here, we note that thermal conductivity
of both high-temperature solid and liquid metals is typically
in the range 10–100 W

mK and two to three orders of magnitude

higher than in insulators [31] due to the electronic contribution
(this is related to smaller electron mass compared to ion mass.)
Hence the minimum discussed here applies to conducting
systems, too.

D. Minima on the phase diagram

αm provides a useful guidance for the minimal value of
thermal diffusivity achieved for a given material. This can
be important, for example, in the area of thermal insulation.
Small values of thermal conductivity are also important in
other areas, such as enhancing the thermoelectric effect. As
already noted, the exceptionally low thermal conductivity re-
ported in Ref. [27] for the solid with a high thermoelectric
figure is still larger than the minima of κ in Fig. 1(a).

It is interesting to ask whether the minima of νm and αm

discussed for the liquid and supercritical states apply to other
parts of the phase diagram. In solids, α = vl in Eq. (4) is
larger because (i) the speed of sound v is faster and (ii) the
mean free path l is larger than that in liquids and is typically
larger than a at the UV cutoff. It can be seen that vl similarly
increases in gases if we recall that the minima at the UV cutoff
approximately correspond to the Frenkel line [18,25,26]. The
speed of sound is approximately equal to the thermal speed
of particles at the line, and it increases above the line in the
gaslike state as thermal velocity ∝√

T . l becomes the particle
mean free path above the line in the gaslike state and similarly
increases with temperature. Hence, α = vl increases in gases,
and the minimum of α, αm at the UV cutoff, applies to all three
states of matter.

The minima αm and νm behave differently in close prox-
imity to the critical point. Indeed, viscosity diverges at the
critical point [32], and νm increases close to the critical point.
Therefore, νm gives the global minimum on the entire phase
diagram. On the other hand, isobaric heat capacity diverges
much faster than κ [33], and α at the critical point tends to
zero as a result. Therefore, αm gives the minimum on the phase
diagram except in the vicinity of the critical point.

III. CONCLUSIONS

In summary, we have shown that thermal diffusivity of liq-
uids and supercritical fluids has a lower bound that is fixed by
fundamental physical constants for each fluid. The newly in-
troduced elementary thermal diffusivity has an absolute lower
bound dependent on h̄ and the proton-to-electron mass ratio
only. We have also shown that (i) the lower bound of thermal
diffusivity theoretically coincides with the lower bound of
kinematic viscosity, and (ii) the ratio between experimental
minima of the two properties is close to 1. This finding implies
a universal lower bound for two distinct properties—energy
and momentum diffusion—which, to the best of our knowl-
edge, has not been discussed before.
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