Two dimensionless fundamental physical constants, the fine structure constant α and the proton-to-electron mass ratio $\frac{m_p}{m_e}$, are attributed a particular importance from the point of view of nuclear synthesis, formation of heavy elements, planets, and life-supporting structures. Here, we show that a combination of these two constants results in a new dimensionless constant that provides the upper bound for the speed of sound in condensed phases, v_u.

We find that $v_u = \alpha \left(\frac{m_p}{m_e} \right)^{\frac{1}{2}}$, where c is the speed of light in vacuum. We support this result by a large set of experimental data and first-principles computations for atomic hydrogen. Our result expands the current understanding of how fundamental constants can impose new bounds on important physical properties.

RESULTS AND DISCUSSION

There are two approaches in which v can be evaluated. The two approaches start with system elasticity and vibrational properties, respectively.

We begin with system elasticity. The longitudinal speed of sound is $v = \left(\frac{E}{\rho} \right)^{\frac{1}{2}}$, where $M = K + \frac{1}{2}G$, K is the bulk modulus, G is the shear modulus, and ρ is the density. It has been ascertained that elastic constants are governed by the density of electromagnetic energy in condensed matter phases. In particular, a clear relation was established between the bulk modulus K and the bonding energy E: $K = f \frac{E}{a}$, where a is the interatomic separation and f is the proportionality coefficient (15, 16). This relation can be derived up to a constant given by the second derivative of the function representing the dependence of energy on volume. For most strongly bonded solids, f varies in the range of 1 to 4 (15, 16). The same data imply the proportionality coefficient between M and $E^{\frac{1}{3}}$ in the range of about 1 to 6. Combining $v = \left(\frac{E}{\rho} \right)^{\frac{1}{2}}$ and $M = f \frac{E}{a}$ gives $v = f \left(\frac{E}{m} \right)^{\frac{1}{2}}$, where m is the mass of the atom or molecule, and we used $m = \rho a^3$. The factor f is about 1 to 2 and can be dropped in an approximate evaluation of v. Then

$$v = \left(\frac{E}{m} \right)^{\frac{1}{2}}$$

1. School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
2. Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, UK.
3. Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, UK.
4. Advanced Institute for Materials Research, Tohoku University, Sendai, Japan.
5. Institute for High Pressure Physics, RAS, 108840 Troitsk, Moscow, Russia.

Corresponding author. Email: k.trachenko@qmul.ac.uk

We now recall that the bonding energy in condensed phases is given by the Rydberg energy on the order of several electron volts (1) as

$$E_R = \frac{m_e e^4}{32 \pi^2 \epsilon_0^2 \hbar^2}$$

where e and m_e are electron charge and mass, respectively.

E_R is used for order-of-magnitude estimations of the bonding energy E (1). Using $E = E_R$ from Eq. 3 in Eq. 2 gives

$$v = a \left(\frac{m_e}{2m}\right)^{\frac{1}{2}} c$$

(4)

where $a = \frac{1}{4\pi \epsilon_0 \hbar c}$ is the fine structure constant.

A result similar to Eq. 4 can be obtained in the second approach that starts with the consideration of the vibrational properties of the system. The longitudinal speed of sound, v, can be evaluated as the phase velocity from the longitudinal dispersion curve $\omega = \omega(k)$ in the Debye approximation: $v = \frac{\omega_D}{k_D}$, where ω_D and k_D are Debye frequency and wave vector, respectively. Using $k_D = \frac{\pi}{\alpha}$, where α is the interatomic (intermolecule) separation, gives

$$v = \frac{1}{\pi} \omega_D \alpha$$

(5)

We recall that the characteristic scale of interatomic separation is given by the Bohr radius a_B on the order of the angstrom as

$$a_B = \frac{4\pi \epsilon_0 \hbar^2}{m_e e^2}$$

(6)

We now use the known ratio between the phonon energy, $\hbar \omega_D$, and E. The phonon energy $\hbar \omega_D$ can be approximated as $\hbar \left(\frac{E}{m a^2}\right)^{\frac{1}{2}}$, where m is the mass of the atom. Taking the ratio $\frac{\hbar \omega_D}{E}$ and using $a = a_B$ from Eq. 6 and $E = E_R$ from Eq. 3 give $\frac{\hbar \omega_D}{E}$, up to a constant factor close to unity, as

$$\frac{\hbar \omega_D}{E} = \left(\frac{m_e}{m}\right)^{\frac{1}{2}} \left(\frac{m_e}{a_B}\right)^2$$

(7)

Using Eq. 7 in Eq. 5 gives

$$v = \frac{E a_B}{\pi \hbar} \left(\frac{m_e}{m}\right)^{\frac{1}{2}}$$

(8)

v in Eq. 4, up to a constant factor, can now be obtained by using $a = a_B$ from Eq. 6 and $E = E_R$ from Eq. 3 in Eq. 8. Alternatively, the same result can be found by (i) recalling that the bonding energy, or the characteristic energy of electromagnetic interaction, is $E = \frac{\hbar^2}{2m a^2}$ and (ii) using this E and $a = a_B$ from Eq. 6 in Eq. 8.

As compared to the first approach, the second approach to evaluate v involves additional approximations, including evaluating v from the dispersion relation in the Debye model, using $a = a_B$ in Eq. 6, and the ratio between the phonon and bonding energies (Eq. 7). We therefore focus on the result from the first approach (Eq. 4).

We now discuss Eq. 4 and its implications. m_e characterizes electrons, which are responsible for the interactions between atoms. The electronic contribution is further reflected in the factor ac ($ac \approx \frac{\hbar}{m_e c}$), which is the electron velocity in the Bohr model.

We note that ac and v do not depend on c. The reason for writing v in terms of ac in Eq. 4 and the ratio $\frac{\hbar}{m_e c}$ in terms of a in Eq. 1 is twofold. First, it is convenient and informative to represent the bound in terms of the ratio $\frac{\hbar}{m_e c}$ similarly to the ratio of the Fermi velocity and the speed of light $\frac{v_F}{c}$ commonly used. Second, it is α (together with m_e/m_p) that is given fundamental importance and is finely tuned to result in proton stability and to enable the synthesis of heavy elements (2) and, therefore, the existence of solids and liquids where sound can propagate to begin with.

m in Eq. 4 characterizes atoms involved in sound propagation. Its scale is set by the proton mass m_p: $m = Am_p$, where A is the atomic mass. Recall that a_B in Eq. 6 and E_R in Eq. 3 are characteristic values derived for the H atom. We similarly set $A = 1$ and $m = m_p$ in Eq. 4 to arrive at the upper bound of v in Eq. 4, v_u, as

$$v_u = \alpha \left(\frac{m_e}{2m_p}\right)^{\frac{1}{2}} c \approx 36, 100 \frac{m}{s}$$

(9)

and observe that v_u depends on fundamental physical constants only, including the dimensionless fine structure constant α and the proton-to-electron mass ratio.

Equation 9 is the extension of Eq. 4 to atomic hydrogen. We will calculate v in atomic H later in the paper.

Combining Eqs. 4 and 9 and $m = Am_p$ gives

$$v = \frac{v_u}{A^{\frac{1}{2}}}$$

(10)

Before discussing the experimental data in relation to Eq. 4 and its consequences (Eqs. 9 and 10), we note that the speed of sound is governed by the elastic moduli and density, which substantially vary with bonding type: from strong covalent, ionic, or metallic bonding, typically giving a large bonding energy, to intermediate hydrogen bonding, and weak dipole and van der Waals interactions. Elastic moduli and density also vary with the particular structure that a system adopts. Furthermore, the bonding type and structure are themselves interdependent: Covalent and ionic bonding result in open and close-packed structures, respectively (14). As a result, the speed of sound for a particular system cannot be predicted analytically and without the explicit knowledge of structure and interactions (17), similarly to other system-dependent properties such as viscosity or thermal conductivity (but differently to other properties such as the classical energy and specific heat, which are universal in the harmonic approximation (13)). Nevertheless, the dependence of v on m or A can be studied in a family of elemental solids. Elemental solids do not have confounding features existing in compounds due to mixed bonding between different atomic species (including mixed covalent-ionic bonding between the same atomic pairs as well as different bonding types between different pairs).

To compare Eq. 10 to experiments, we plot the available data of v as a function of A for 36 elemental solids (18–20) in Fig. 1, including semiconductors and metals with large bonding energies. The data are depicted in a log-log plot. Equation 10 is the straight line in Fig. 1 ending in its upper theoretical bound (Eq. 9) for $A = 1$. The linear Pearson correlation coefficient calculated for the experimental set (log A, log v) is -0.7. Its absolute value is slightly above the boundary notionally separating moderate and strong correlations (21). The ratio of calculated and experimental v is in the range of 0.6 to 2.4, consistent with the range of f^2 approximated by 1 in the derivation of Eq. 2.

We also show the fit of the experimental data points to the inverse square root function predicted by Eq. 10 as the dashed line in Fig. 1 and observe that it lies close to Eq. 10. The fitted curve gives
Ni extends to higher values in the range of 4000 to 5000 in liquids satisfy the bound similarly to solids, evaluation of v and u in more detail, gives good agreement with the experimental trend.

This indicates that the numerical coefficient in Eq. 4, which is subject to an approximation as mentioned earlier and discussed below in more detail, gives good agreement with the experimental trend.

The agreement of Eq. 10 with experimental data supports Eq. 4 and its consequence, the upper limit v_u in Eq. 9. We now show that v_u agrees with a wider experimental set. In Fig. 2, we show experimental v (18–20) in 133 systems, including compounds together with the elemental solids in Fig. 1. We observe that experimental v are smaller than the upper theoretical bound v_u in Eq. 9. v_u is about twice as large as v in diamond, the highest speed of sound measured at ambient conditions [the in-plane speed of sound in graphite is slightly above v in diamond (10)].

Equation 10 can be used to roughly predict the average or characteristic speed of sound v, $A_1^{1/2}$, which, according to Eq. 10, is relevant for the speed of sound, varies across the periodic table in the range of about 1 to 15, with an average value of 8. According to Eq. 10, the corresponding v is $v = 4513m/s$. This is in 16% agreement with $5392m/s$, the average over all elemental solids, and in 14% agreement with $5267m/s$, the average over all solids in Fig. 2.

We have included the experimental speed of sound of room-temperature liquids in Fig. 2, with typical v in the range of 1000 to 2000 m/s, in high-temperature liquid metals such as Al, Fe, Mg, and Ni extends to higher values in the range of 4000 to 5000 m/s (22). Similarly to solids, v in liquids satisfy the bound v_u. We note that our evaluation of v and v_u applies to liquids with cohesive states (23), where molecular dynamics includes solid-like oscillatory components (24) and where v is set by the elastic moduli as in solids, albeit taken at their high-frequency (short-time) values (24, 25). On the other hand, at high temperature and/or low density, cohesive states are lost, and Eqs. 3 and 6 and our derivation of v do not apply. In this regime, the moduli are related to the kinetic energy of molecules rather than interactions and bonding energy, and v starts to increase with temperature and loses its universality. Above the Frenkel line (23, 26, 27), formalizing the qualitative change of molecular dynamics from combined oscillatory and diffusive to purely diffusive, v is equal to the thermal speed of molecules as in a gas.

With regard to liquids, we note that an expression similar to Eq. 2 was earlier obtained by evaluating the elastic modulus using the liquid state theory and applied to liquid metals (28). The speed of sound can also be evaluated in the theory of metals using the ionic plasma frequency and subsequently accounting for the conduction electrons screening. This results in the Bohm-Staver relation $v \sim (m_e^3)^{1/4} v_F$, where v_F is the Fermi velocity (1), and hence, $v \sim A^{1/4}$ as in Eq. 10 [the factor $(m_e^3)^{1/4}$ also appears in the ratio of sound to melting velocity (11)]. These and other relations derived for the liquid state give a fairly good account of the experimental sound velocity in liquid metals (22, 28).

We make three further remarks about the calculated v and its bound. First, this derivation involves approximations as mentioned earlier. The approximations may affect the numerical factor in Eqs. 4 and 9. At the same time, the characteristic scale of v in Eq. 4 and its upper bound (Eq. 9) is set by fundamental constants. Second, Eqs. 3, 6, and 7 used in the second derivation of v assume valence electrons directly involved in bonding and hence strongly bonded systems, including metallic, covalent, and ionic solids. Although bonding in weakly bonded solids such as noble, molecular, and hydrogen-bonded...
solids is also electromagnetic in origin, weak dipole and van der Waals interactions result in smaller E (29) and smaller v as a result. Therefore, the upper bound v_u applies to weakly bonded systems, too. We note here that our evaluation does not directly distinguish between bonding types and hence does not consider the trend of v to increase along the rows of the periodic table, from soft metals to hard covalent materials in Fig. 1. This trend can be accounted for by (i) noting that v in Eq. 8 and $E = \frac{\hbar c}{2m_p u^3}$ imply that $v \propto \frac{1}{u}$ and (ii) introducing an extra parameter into the equation for v related to density (we are grateful to K. Behnia for pointing this out). Third, our evaluation of v does not account for the effect of pressure on E and u and applies when the enthalpic term is relatively small.

Our upper bound in Eq. 9 corresponds to solid hydrogen with strong metallic bonding. Although this phase only exists at megabar pressures (30, 31) and is dynamically unstable at ambient pressure where molecular formation occurs, it is interesting to calculate v in atomic hydrogen to check the validity of our upper bound. In addition, there has been strong interest in the properties of atomic hydrogen at high pressure [see, e.g., (30–32)], although the speed of sound in these phases was not discussed and remains unknown.

We have calculated the speed of sound in atomic hydrogen for the I$4_1/amd$ structure (33, 34), which is currently the best candidate structure for solid atomic metallic hydrogen. This structure is calculated to become thermodynamically stable in the pressure range of 400 to 500 GPa (35, 36), below which solid hydrogen is a molecular solid. However, we find that I$4_1/amd$ is dynamically stable at pressures above about 250 GPa, and therefore, we perform calculations in the pressure range of 250 to 1000 GPa. The speed of sound as a function of pressure and density reported in Fig. 3 corresponds to the highest energy acoustic branch and is averaged over stochastically generated directions in q-space.

Our upper bound (Eq. 9) does not account for the enthalpic contribution to the system energy as mentioned earlier; including the pressure effect would increase v_u considerably at pressures shown in Fig. 3. Despite this, the calculated v remains below v_u in a wide pressure range and starts increasing above v_u only above very high pressures of about 600 GPa. In this regard, we note that hydrogen is a unique element with no core electrons. This results in the absence of strong repulsive contributions to the interatomic interaction as compared with heavier elements and, consequently, weaker pressure dependence of elastic moduli and the speed of sound (37). We also note that sharper change of v at lower pressure shown in Fig. 3 is related to approaching the limit of dynamical stability of the I$4_1/amd$ structure around 250 GPa.

We make three remarks related to previous work. It was noted that thermal diffusivity of insulators does not fall below a threshold value given by the product of ν^2 and the Planckian time (8). Later work linked the upper bound on the speed of sound to the melting velocity related to melting temperature and Lindemann criterion (11). Last, the upper bound of the speed of sound for hadronic matter was conjectured as $\frac{c}{\sqrt{3}}$ and discussed [see, e.g., (38) for a review]. Comparing this bound with Eq. 1, we see that our bound is smaller due to the small coupling constant α and the electron-to-proton mass ratio. In hadronic matter with strong coupling and particles with the same or similar masses, these factors become on the order of 1, in which case our $\frac{c}{\sqrt{3}}$ in Eq. 1 becomes closer to the conjectured limit (38).

As discussed above, v features in several thermodynamic properties of solids. For example, the low-temperature entropy and heat capacity per volume are $S_v = -\frac{2\pi^2}{15}(\text{bohr})^3 T^3$ and $C_v = \frac{2\pi^2}{5}(\text{bohr})^3 T^3$, where u is the average speed of sound and $k_B = 1$ (13). Hence, the upper bound for u gives the smallest possible entropy and heat capacity at a given temperature.

We conclude by returning to dimensionless fundamental physical constants. Rewriting Eq. 9 as

$$\frac{v_u}{c} = \alpha \left(\frac{m_e}{2m_p} \right)^{\frac{1}{2}}$$

we observe that the combination of two important dimensionless fundamental constants, the fine structure constant α and the electron-to-proton mass ratio, interestingly gives the dimensionless ratio, $\frac{v_u}{c}$.

MATERIALS AND METHODS

We have performed density functional theory calculations using the **CASTEP** package (39), with the Perdew-Burke-Ernzerhof exchange-correlation functional (40), an energy cutoff of 1200 eV, and a k-point grid of spacing $2\pi \times 0.025$ Å$^{-1}$ to sample the electronic Brillouin zone. We have relaxed the cell parameters and internal coordinates to obtain a pressure to within 10^{-4} GPa of the target pressure and forces smaller than 10^{-3} eV/Å. We have then calculated the phonon spectrum using the finite difference method (41) in conjunction with nondiagonal supercells (42) with a $4 \times 4 \times 4$ coarse q-point grid to sample the vibrational Brillouin zone. We have used Fourier interpolation to calculate the phonon frequencies at q-vectors close to
the Γ-point and then used finite differences to calculate the corresponding speed of sound.

REFERENCES AND NOTES

16. V. V. Brazhkin, V. L. Solozhenko, Myths about new ultrahard phases: Why materials that are significantly superior to others are impossible. J. Appl. Phys. 125, 130901 (2019).

Acknowledgments: We are grateful to M. Baggioi, K. Behnia, S. Hartnoll, J. Zaanen, and A. Zaccone for discussions. Funding: C.J.P. was supported by the Royal Society through a Royal Society Wolfson Research Merit Award and the EPSRC through grant no. EP/P022596/1. K.T. acknowledges the EPSRC support. Author contributions: All authors contributed equally to this paper. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or references. Additional data related to this paper may be requested from the authors. CASTEP, including its source code, is available through a no-cost worldwide academic research license—further details are provided at www.castep.org/CASTEP/GettingCASTEP.

Submitted 18 May 2020
Accepted 27 August 2020
Published 9 October 2020
10.1126/sciadv.abc8662

Citation: K. Trachenko, B. Monsserrat, C. J. Pickard, V. V. Brazhkin, Speed of sound from fundamental physical constants. Sci. Adv. 6, eabc8662 (2020).