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Heat capacity of matter is considered to be its most important property because it holds information about
system’s degrees of freedom as well as the regime in which the system operates, classical or quantum. Heat
capacity is well understood in gases and solids but not in the third main state of matter, liquids, and is not
discussed in physics textbooks as a result. The perceived difficulty is that interactions in a liquid are both
strong and system-specific, implying that the energy strongly depends on the liquid type and that, therefore,
liquid energy can not be calculated in general form. Here, we develop a phonon theory of liquids where this
problem is avoided. The theory covers both classical and quantum regimes. We demonstrate good
agreement of calculated and experimental heat capacity of 21 liquids, including noble, metallic, molecular
and hydrogen-bonded network liquids in a wide range of temperature and pressure.

R
esearch into liquids has a long history starting from the same time when the theory of gases was developed,
forming the basis for our current understanding of the gas state of matter1. Yet no theory of liquid heat
capacity currently exists, contrary to gases or, for that matter, solids. Consequently, liquid heat capacity is

not discussed in textbooks1–6, and presents a challenge at student lectures7.
Liquids defy common approaches used to discuss the other two main states of matter, gases and solids.

Interactions in a liquid are strong, therefore treating them as a small perturbation as is done in the theory of
gases is not an option2. Atomic displacements in a liquid are large, therefore expanding the energy in terms of
squared atomic displacements and considering the remaining terms small, as is done in the theory of solids, does
not appear justified either. Strong interactions in a liquid appear to result in liquid energy being strongly
dependent on the type of interactions, leading to a statement that liquid energy can not be calculated in general

form2, in contrast to solids and gases where E 5 3NT (kB 5 1) and E~
3
2

NT at high temperature.

Previous research into liquids presents an interesting case when long-lived absence of crucial experimental data
resulted in using our human experience and intuition about liquids instead. Liquids have been viewed to occupy a
state intermediate between gases and solids. Liquids flow, and share this fundamental property with gases rather
than solids. As a result, liquids were mostly viewed as interacting gases, forming the basis for previous theoretical
approaches1–6. On the other hand, Frenkel noted that the density of liquids is only slightly different from that of
solids, but is vastly different from gas densities1. Frenkel has subsequently made another important proposition
which has further put liquids closer to solids in terms of their physical properties. He introduced liquid relaxation
time, t, as the average time between two consecutive atomic jumps at one point in space, and immediately
predicted the solid-like ability of liquids to support shear waves, with the only difference that a liquid does not

support all shear waves as a solid does, but only those with frequency larger than
1
t

because the liquid structure

remains unaltered and solid-like during times shorter than t. Frenkel’s ideas did not find due support at his time,
partly because of the then existing dominating school of thought advocating different views8, and consequently
were not theoretically developed.

It took many years to verify Frenkel’s prediction9–13. With the aid of powerful synchrotron radiation sources
that became available fairly recently, and about 50 years after Frenkel’s work, it has become apparent that even
low-viscous liquids maintain high-frequency modes with wavelengths close to interatomic separations13. We note
that being the eigenstates of topologically disordered liquids, these modes are phonon-like in a sense that they are
not entirely harmonic vibrations as in crystals.

The data from the experimental advances above, together with theoretical understanding of the phonon states
in a liquid due to Frenkel, raise an important question of whether the phonon theory of liquid thermodynamics
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could be constructed, similar to the phonon theory of solids. Below
we develop a phonon theory of thermodynamics of liquids that cov-
ers both classical and quantum regimes. We find good agreement
between calculated and experimental heat capacity for many liquids
in a wide temperature and pressure range.

Results
Theory. There are two types of atomic motion in a liquid: phonon
motion that consists of one longitudinal mode and two transverse

modes with frequency v . vF, where vF~
2p
t

is Frenkel frequency,

and the diffusional motion due to an atom jumping between two
equilibrium positions. In turn, the phonon and diffusional motion
consists of kinetic and potential parts, giving the liquid energy as

E~KlzPlzKs vwvFð ÞzPs vwvFð ÞzKdzPd ð1Þ

where Kl and Pl are kinetic and potential components of the
longitudinal phonon energy, Ks(v . vF) and Ps(v . vF) are
kinetic and potential components of the energy of shear phonons
with frequency v . vF, and Kd and Pd are kinetic and potential
energy of diffusing atoms. The energy of longitudinal mode is the
same as in a solid, albeit different dissipation laws apply at low and

high frequency1. In the next paragraph, we re-write E in the form
convenient for subsequent calculations.

Pd can be omitted because Pd = Ps(v . vF). This is because the
absence of shear modes with frequency v , vF due to the dynamic
Frenkel mechanism implies smallness of low-frequency restoring
forces and therefore smallness of low-frequency potential energy of
shear modes: Ps(v , vF) = Ps(v . vF), where Ps(v , vF) is the
potential energy of low-frequency shear modes14,15. Instead of low-
frequency shear vibrations with potential energy Ps(v , vF), atoms

in a liquid ‘‘slip’’ and undergo diffusing motions with frequency
2p
t

and associated potential energy Pd. Pd is due to the same interatomic
forces that Ps(v , vF), giving Pd < Ps(v , vF). Combining this with
Ps(v , vF) = Ps(v . vF), Pd = Ps(v . vF) follows. Re-phrasing
this, were Pd large and comparable to Ps(v . vF), strong restoring
forces at low frequency would result, and lead to the existence of low-
frequency vibrations instead of diffusion. We also note that because
Pl < Ps, Pd = Ps(v . vF) gives Pd = Pl, further implying that Pd can
be omitted in Eq. (1).

Then, E 5 K 1 Pl 1 Ps(v . vF), where total kinetic energy in a

liquid, K (K~
3
2

N kBT in the classical case), includes both vibrational

Figure 1 | Experimental and calculated cv for liquid metals. Experimental cv are at ambient pressure, with electronic contribution subtracted18,19. Values

of tD used in the calculation are 0.95 ps (Cs), 0.27 ps (Ga), 0.49 ps (Hg), 0.31 ps (In), 0.57 ps (K), 0.42 ps (Na), 0.64 ps (Pb), 0.74 ps (Rb) and 0.18 ps (Sn).

Values of G‘ are 0.17 GPa (Cs), 2.39 GPa (Ga), 1.31 GPa (Hg), 1.58 GPa (In), 1.8 GPa (K), 3.6 GPa (Na), 1.42 GPa (Pb), 0.25 GPa (Rb) and 3 GPa (Sn).

Experimental a (Ref.19) are 3?1024 K21 (Cs), 1.2?1024 K21 (Ga), 1.8?1024 K21 (Hg), 1.11?1024 K21 (In), 2.9?1024 K21 (K), 2.57?1024 K21 (Na),

3?1024 K21 (Pb), 3?1024 K21 (Rb) and 0.87?1024 K21 (Sn). Values of a used in the calculation are 3.8?1024 K21 (Cs), 1.2?1024 K21 (Ga), 1.6?1024 K21

(Hg), 1.25?1024 K21 (In), 2.9?10 24 K21 (K), 2.57?1024 K21 (Na), 3?1024 K21 (Pb), 4.5?1024 K21 (Rb) and 1.11?1024 K21 (Sn).
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and diffusional components. E can be re-written using the virial

theorem Pl~
El

2
and Ps vwvFð Þ~ Es vwvFð Þ

2
(here, P and E refer

to their average values) and by additionally noting that K is equal to
kinetic energy of a solid and can therefore be written, using the virial
theorem, as the sum of kinetic terms related to longitudinal and shear

waves: K~
El

2
z

Es

2
, giving E~Elz

Es

2
z

Es vwvFð Þ
2

. Finally noting

that Es 5 Es(v , vF) 1 Es(v . vF), where the two terms refer to
their solid-state values, liquid energy becomes

E~ElzEs vwvFð Þz Es vvvFð Þ
2

ð2Þ

Each term in Eq. (2) can be calculated using the phonon free energy,

Fph~E0zT
P

i
ln 1{ exp {

Bvi

T

� �� �
, where E0 is the energy of

zero-point vibrations2. In calculating the energy,

Eph~Fph{T
dFph

dT
, we take into account the effect of thermal expan-

sion, important in liquids. This implies
dvi

dT
=0, contrary to the

harmonic case, and gives

Eph~E0zB
X

i

vi{T
dvi

dT

exp
Bvi

T

� �
{1

ð3Þ

Using quasi-harmonic approximation Grüneisen approximation

gives
dv

dT
~{

av

2
, where a is the coefficient of thermal expansion16.

Putting it in Eq. (3) gives

Eph~E0z 1z
aT
2

� �X
i

Bvi

exp
Bvi

T

� �
{1

ð4Þ

The energy of one longitudinal mode, the first term in Eq. (2), can
be calculated by substituting the sum in Eq. (4), S, with Debye
vibrational density of states for longitudinal phonons,

g vð Þ~ 3N
v3

D
v2, where vD is Debye frequency. The normalization

of g(v) reflects the fact that the number of longitudinal modes is

N. Integrating from 0 to vD gives S~NTD
BvD

T

� �
, where

D xð Þ~ 3
x3

ðx
0

z3dz
exp zð Þ{1

is Debye function2. The energy of two shear

modes with frequency v . vF, the second term in Eq. (2), can be
similarly calculated by substituting S with density of states

g vð Þ~ 6N
v3

D
v2, where the normalization accounts for the number

of shear modes of 2N. Integrating from vF to vD gives

S~2NTD
BvD

T

� �
{2NT

vF

vD

� �3

D
BvF

T

� �
. Es(v , vF) in the last

term in Eq. (2) is obtained by integrating S from 0 to vF with the

same density of states, giving S~2NT
vF

vD

� �3

D
BvF

T

� �
. Putting all

terms in Eq. (4) and then Eq. (2) gives finally the liquid energy

E~NT 1z
aT
2

� �
3D

BvD

T

� �
{

vF

vD

� �3

D
BvF

T

� � !
ð5Þ

where we have omitted zero-point vibration energy E0 because below
we calculate the derivative of E. We note that in general, E0 is tem-
perature-dependent because it is a function of vF and t (see Eq. (2)).

Figure 2 | Experimental and calculated cv for noble liquids. Experimental cv and g are taken from the NIST database17 at pressures 378 MPa (Ar),

200 MPa (Kr), 70 MPa (Ne), and 700 MPa (Xe). Values of tD used in the calculation are 0.5 ps (Ar), 0.67 ps (Kr), 0.31 ps (Ne) and 0.76 ps (Xe). Values of

G‘ are 0.18 GPa (Ar), 0.23 GPa (Kr), 0.12 GPa (Ne) and 0.45 GPa (Xe). Experimental values of a calculated from the NIST database at the corresponding

pressures above are 3.6?1024 K21 (Kr), 7.7?1023 K21 (Ne) and 4.1?1024 K21 (Xe). Values of a used in the calculation are 1.3?1023 K21 (Kr), 6.8?1023 K21

(Ne) and 3.6?1024 K21 (Xe). For Ar, calculating cv in harmonic approximation (a 5 0) gives good agreement with experimental cv.
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However, this becomes important at temperatures of several K only,
whereas below we deal with significantly higher temperatures.

Eq. (5) spans both classical and quantum regimes, an important
feature for describing the behavior of liquids discussed below.

We note that the presented phonon theory of liquids operates at
the same level of approximation as Debye theory of solids, particu-
larly relevant for disordered isotropic systems2 such as glasses and
liquids. The result for a harmonic solid follows from Eq. (5) when vF

5 0, corresponding to infinite relaxation time, and a 5 0.

Comparison with experimental data. We now compare Eq. (5) to
the experimental data of heat capacity. We have used the National
Institute of Standards and Technology (NIST) database17 that
contains cv for many liquids, and have chosen monatomic nobel
liquids, molecular liquids, as well as hydrogen-bonded network
liquids. We have used cv measured on isobars. We aimed to check
our theoretical predictions in a wide range of temperature, and
therefore selected the data at pressures exceeding the critical
pressures of the above systems where they exist in a liquid form in
the broad temperature range. As a result, the temperature range in

which we calculate cv is about 100–700 K for various liquids (see
Figures 1, 2, 3 and 4). Experimental cv of metallic liquids were taken
from Refs.18,19 at ambient pressure. We note that previously, we have
considered cv of some of these metals on the basis classical approach
only14. The total number of liquids considered is 21.

We numerically evaluated Debye functions in Eq. (5) for each

temperature and calculated cv~
1
N

dE
dT

. We have taken viscosity data

from the NIST database at the same pressures as cv and converted it

to t using the Maxwell relationship t~
g

G?
, where g is viscosity and

G‘ is infinite-frequency shear modulus, giving vF~
2p
t

~
2pG?

g
.

Viscosities of liquid metals and F2 were taken from Refs.20–25 and
Ref.26, respectively.

We note that Debye model is not a good approximation in
molecular and hydrogen-bonded systems where the frequency
of intra-molecular vibrations considerably exceeds the rest of fre-
quencies in the system (e.g. 2260 K in O2, 3340 K in N2, 3572 K in
CO). However, the intra-molecular modes are not excited in the
temperature range of experimental cv (see Figures 3–4). Therefore,

Figure 3 | Experimental and calculated cv for molecular liquids. Experimental cv and g are taken from the NIST database17 at pressures 50 MPa (CH4),

55 MPa (CO), 0.1 MPa (F2), and 170 MPa (H2S), 65 MPa (N2) and 45 MPa (O2). Experimental cv has the rotational contribution subtracted (see text).

Experimental g for F2 is from Ref.26. Values of tD used in the calculation are 0.44 ps (CH4), 0.55 ps (CO), 0.71 ps (F2), 0.65 ps (H2S), 0.38 ps (N2) and 0.46

ps (O2). Values of G ‘ are 0.1 GPa (CH4), 0.11 GPa (CO), 0.23 GPa (F2), 0.15 GPa (H2S), 0.14 GPa (N2) and 0.22 GPa (O2). Experimental values of a

calculated from the NIST database at the corresponding pressures above are 3.1?1023 K21 (CH4), 4.1?1023 K21 (CO), 4.31?1023 K21 (F2), 1.2?1023 K21

(H2S), 3.9?1023 K21 (N2) and 4.4?1023 K21 (O2). Values of a used in the calculation are 1.4?1023 K21 (CH4), 5.5?1023 K21 (CO), 4.31?1023 K21 (F2),

6.5?1024 K21 (H2S), 3.9?1023 K21 (N2) and 4.4?1023 K21 (O2).
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the contribution of intra-molecular motion to cv is purely rotational,
crot. The rotational motion is excited in the considered temperature
range, and is therefore classical, giving crot 5 R for linear molecules

such as CO, F2, N2 and O2 and crot~
3R
2

for molecules with three

rotation axes such as CH4, H2S, H2O and D2O. Consequently, cv for
molecular liquids shown in Figures 3–4 correspond to heat capacities
per molecule, with crot subtracted from the experimental data. In this
case, N in Eq. (5) refers to the number of molecules.

We also note that in H2O, approximately half of experimental cv is
the configurational contribution due to the temperature-induced
structural modification of the hydrogen-bonded network, although
the precise value of this contribution is not currently settled27,28. The
structural modification includes changing coordinations of H2O
molecules during the continuous transition between the low-density
and high-density liquid in the wide temperature range28. Similarly to
the phonon theory of solids, effects of structural changes are not
accounted for in the general theory presented here. Therefore,
experimental cv for H2O and D2O shows cv with half subtracted from

their values due to the configurational term and crot~
3R
2

subtracted

further as discussed above. Due to the approximate way in which the

configurational contribution is treated for H2O and D2O, the agree-
ment between the experimental and calculated cv should be viewed as
qualitative, in contrast to the quantitative agreement for the rest of
liquids considered. As for other molecular liquids above, the result-
ing cv represents heat capacity per molecule.

Experimental and calculated cv for 21 noble, metallic, molecular
and hydrogen-bonded network liquids are shown in Figures 1–4.
Figures 1–4 make one of the central points of our paper: the proposed
phonon theory of liquids gives good agreement with experimental
data. Importantly, calculated cv has no free adjustable parameters,
but depends on vD, a and G‘ (see Eq. (5)) which are fixed by system
properties. vD, a and G‘ that give the best agreement in Figures 1–4

are close to their typical values. tD~
2p
vD

used in the calculation (see

the captions in Figures 1–4) are consistent with the known values
that are typically in the 0.1–1 ps range11,29. For monatomic liquids, tD

were taken as experimental tD in corresponding solids. Similarly, the
difference between experimental a and a used in the calculation is
within 30% on average. Finally, G‘ used in the calculation are on the
order of GPa typically measured11,29.

Discussion
We first note that some of the considered liquids are in the quantum
regime at low temperature. Taking T as the lowest temperature in

Figures 1–4 and vD~ 2p
tD

, where tD are given in the captions of

Figures 1–4, we find that
BvD

T
is in the range 0.1–3 for various liquids.

Consequently, some liquids can be described by classical approxi-
mation fairly well, whereas others require quantum approach: for

example,
BvD

T
w1 for Ne, O2, N2, F2, CH4 and CO, implying pro-

gressive phonon excitation with temperature increase.
We observe that cv decreases with temperature in Figures 1–4.

There are two main competing effects that contribute to cv in Eq.

(5). First, temperature increase results in the increase of vF~
2p
t

.

Consequently, cv decreases as a result of the decreasing number of
shear waves that contribute to liquid energy and cv. Second, cv

increases with temperature due to progressive phonon excitation
as discussed above. The first effect dominates in the considered tem-
perature range, and the net effect is the decrease of cv with temper-
ature seen in Figure 1.

We further observe that cv changes from approximately 3 to 2,
showing a universal trend across a wide range of liquids. This can be

understood by noting that at low temperature,
vF

vD

� �3

and the sec-

ond term in the last bracket in Eq. (5) are small, giving cv close to 3
(including the contribution from the anharmonic term). At high
temperature when vF < vD and Debye functions are close to 1,
the term in the second bracket in Eq. (5) is 2, giving cv < 2.

We note that on further temperature increase, cv decreases from 2
to its gas value of 1.517. This is related to the progressive disappear-
ance of longitudinal phonons, an effect discussed in our forthcoming
paper.

The decrease of cv seen in Figures 1–4 does not need to be generic.
Indeed, when the phonon excitation dominates at low temperature,
as in the case of strongly quantum liquids such as H2 or He, cv

increases with temperature17.
Good agreement between theoretical and calculated cv makes sev-

eral important points. First, it is interesting to revisit the statement
that liquid energy can not be calculated in general form because
interactions are both strong and system-specific2. In the proposed
phonon theory of liquids, this difficulty does not arise because strong
interactions are treated from the outset as in the theory of solids.

Second, the proposed phonon theory of liquids has an advantage
over the previous approach where liquid potential energy is

Figure 4 | Experimental and calculated cv for H2O and D2O.
Experimental cv and g are taken from the NIST database17 at pressures
150 MPa (H2O) and 80 MPa (D2O). Experimental cv has rotational and

configurational contribution subtracted (see text). Values of tD used in the

calculation are 0.15 ps (H2O) and 0.53 ps (D2O). For D2O, experimental a

calculated from the NIST database at the corresponding pressure above is

9.4?1024 K21, and a used in the calculation is 1.1?1023 K21. For H2O,

calculating cv in harmonic approximation (a 5 0) gives good agreement

with to experimental cv.
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calculated from correlation functions and interatomic interactions2,3.
Starting from the earlier proposals30, this approach was developed in
several directions (see, e.g., Refs.2,3,31–34), and can be used to
calculate the energy of simple liquids where interactions are pair
and short-ranged and correlations are two-body as is the case in,
for example, noble liquids or hard-sphere models. On the other hand,
the calculations become intractable in general case3,33, particularly
when interactions and correlations become complex (e.g., many-
body) as in the liquids discussed above, precluding the calculation
of cv and, consequently, understanding and interpreting experi-
mental data. On the other hand, if the phonon states of the liquid
depend on t only as proposed by Frenkel1, the liquid energy and cv

depend implicitly on t only, even though correlation functions and
interatomic interactions may affect both cv and t in a complex way.
Then, the relationship between cv and t becomes fairly simple (see
Eq. (5)) and explains the experimental behavior of a wide class of
liquids, both simple and complex.

The last assertion is important for a general outlook at liquids:
despite their apparent complexity, understanding their ther-
modynamics may be easier than previously thought. Indeed, we
have good understanding of solid thermodynamics based on pho-
nons no matter how complicated interactions or structural corre-
lations in a solid are. Our current results suggest that the same can
apply to liquids.
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