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Fundamental physical constants play a profound role in physics. For example, they gov-
ern nuclear reactions, formation of stars, nuclear synthesis and stability of biologically vital
elements. These are high-energy processes discussed in particle physics, astronomy and
cosmology. More recently, it was realised that fundamental physical constants extend their
governing reach to low-energy processes and properties operating in condensed matter sys-
tems, often in an unexpected way. These properties are those we experience daily and can
routinely measure, including viscosity, thermal conductivity, elasticity and sound. Here, we
review this work. We start with the lower bound on liquid viscosity, its origin and show how
to relate the bound to fundamental physical constants. The lower bound of kinematic viscos-
ity represents the global minimum on the phase diagram. We show how this result answers
the long-standing question considered by Purcell and Weisskopf, namely why viscosity never
falls below a certain value. An accompanying insight is that water viscosity and water-based
life are well attuned to fundamental constants including the Planck constant. We then discuss
viscosity minima in liquid He above and below the λ-point. We subsequently consider a very
different property, thermal diffusivity, and show that it has the same minimum fixed by fun-
damental physical constants as viscosity. We also discuss bounds related to elastic properties,
elastic moduli and their analogues in low-dimensional systems, and show how these bounds
are related to the upper bound for the speed of sound. We conclude with listing ways in which
the discussion of fundamental constants and bounds advance physical theories.

Keywords: fundamental physical constants; fine-tuning in the Universe; liquid theory;
viscosity; quantum liquids; thermal conductivity; elastic properties; speed of sound
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1. Introduction

Our search for the source of consistency and predictability of the observed physical world has led
us to physical laws and related theories. These theories involve fundamental physical constants
such as the Planck constant, electron mass or dimensionless combinations of these constants, pure
numbers. These constants give the observed Universe its distinctive character and differentiate it
from others we might imagine [1–10].

Understanding the values of fundamental constants has a long history and is viewed as one
of the grandest questions in modern science [11]. Given that we don’t know anything more fun-
damental [12], this is probably one of the ultimate grand challenges in physics. Referring to
fundamental constants as “barcodes of ultimate reality”, Barrow proposes that these constants
will one day unlock the secrets of the Universe [1].

Fundamental constants play a profound role in a number of processes, from governing nuclear
reactions and nuclear synthesis in stars including carbon, oxygen and so on which can then form
molecular structures essential to life. Theories of these processes suggest that they require a
finely-tuned balance between the values of several fundamental constants. One example is the
tuned balance between the masses of up and down quarks: larger up-quark mass gives the neutron
world without protons and hence no atoms consisting of nuclei and electrons around them; larger
down-quark mass gives the proton world without neutrons where light hydrogen atoms can form
only but not heavy atoms. Our world with many heavy atoms with electronic orbitals which
endow complex chemistry would disappear with only a few per cent fractional change in the
mass difference of the two quarks [8,9,13].

Another commonly discussed example is the Hoyle’s prediction of the energy level of carbon
nucleus of about 7.65 MeV. This resonance level is required in order to explain carbon abun-
dance and in particular the synthesis of carbon from fusing three alpha particles in stars [1,2,5,6].
Following the Hoyle’s prediction, the required energy level was experimentally confirmed. This
carbon resonance-level coincidence is considered striking. A related important effect is a slightly
lower resonance level in oxygen, which enables carbon to survive further resonant reactions. This
finely balanced sequence of coincidences enables carbon-based life. In this process, production of
carbon and oxygen depends on their nuclear energy levels which, in turn, depend on the fine struc-
ture constant α = e2

�c ≈ 1
137 and strong nuclear force constant. A small change of these constants

(more than 0.4% and 4% for the nuclear and fine structure constant) results in almost no carbon
or oxygen produced in stars [1,5,6]. α and the proton-to-electron mass ratio β = me

mp
≈ 1

1836 play
a role in making the centres of stars hot enough to initiate nuclear reactions, and unless α and β

satisfy a certain relation, there would be heavy nuclei produced in stars. There are other exam-
ples of what would happen as a result of altering fundamental constants, all showing that there
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is a fairly narrow “habitable zone” in the parameter space (α,β) (see, however, Ref. [9]). In this
zone, matter can remain stable long enough for stars to evolve and produce essential biochem-
ical elements including carbon, planets can form and life-supporting molecular structures can
emerge [1,2,5,6]. For this reason, the observed fundamental constants are called “bio-friendly”
or “biophilic” [1,9].

The discussion of the role of fundamental constants was mostly limited to high-energy pro-
cesses including particle physics, astronomy and cosmoslogy. More recently, it has been realised
that the fundamental constants extend their governing reach to the properties of condensed matter
phases and at energy much lower than the high-energy physics. Many of these properties are those
we experience daily and can routinely measure, including viscosity, thermal conductivity, elas-
ticity and sound. Although these are all familiar properties, their numerical values remain hard to
predict on the basis of an analytical theory because they are strongly depend on the system and
external parameters. This is contrast to a class of universal properties such as, for example, the
Dulong-Petit result for the specific heat.

One frequent way in which fundamental physical constants affect system properties is that
they impose a bound on a property. We will show that a number of important physical properties
have lower or upper bounds in a sense that they do not fall below or exceed certain values.
Understanding the origin of these bounds has enthralled physicists, including those interested in
collective dynamics and systems where many interacting agents operate. Apart from the interest
in the values and origins of the bounds themselves, there is another important reason why bounds
are interesting: finding and understanding these bounds often means that we enhance our grasp
of or clarify the underlying physics or property in question.

The main aim of this review is to summarise and synthesise earlier and more recent results
related to condensed matter properties in terms of fundamental physical constants. In the process,
we will see that comparing the observed properties to their fundamental bounds reveals important
insights not just about the bounds themselves but also about the essential physical processes at
operation as well as theories of those processes. This includes understanding different dynamical
regimes of the system and predicting its behaviour in future experiments.

This reviews is organised as follows. In Chapter 2, we discuss the lower bound on liquid vis-
cosity, its origin and show how to relate this bound to fundamental constants. We show how this
result answers the long-standing question posed by Purcell and considered by Weisskopf, namely
why viscosity never falls below a certain value. This has the implications for water viscosity and
life which appears to be well attuned to the degree of quantumness of the physical world as well
as other fundamental constants. We will note that the viscosity minimum is interestingly close
to that in a very different system, the quark-gluon plasma. We also discuss viscosity minima in
liquid He above and below the λ-point.

In Chapter 3, we consider a very different property, thermal conductivity, and show that, sim-
ilarly to viscosity, it has a minimum fixed by fundamental constants. Whereas thermal diffusivity
minimum gives a minimum on the phase diagram except in the vicinity of the critical point, the
minimum of kinematic viscosity is a global minimum on the entire phase diagram as discussed
in Chapter 4.

In Chapter 5, we review the bounds related to elastic moduli and their analogues in low-
dimensional systems. This will lead us to the last Chapter 6 where we discuss the upper bound on
the speed of sound in condensed matter phases. Our review includes fairly recent results including
our own, and we raise interesting open questions in this and related fields.

In the last Chapter 7, we conclude with listing ways in which the discussion of fundamental
constants and bounds advance physical theories. This includes insights about essential physical
processes at operation, understanding different dynamical regimes, predicting future experiments
as well as understanding characteristic values of condensed matter properties. The realisation that
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water-based life forms are well attuned to fundamental constants raises far-reaching questions
related to our place in the Universe, e.g. what values of fundamental constants make water-
based life possible and how well-tuned these constants need to be to remain bio-friendly at the
biochemical level.

2. Minimal viscosity

2.1. The liquid problem

Our first case study involves viscosity and its minima. We show that the minimal value of liquid
viscosity turns out to be nearly universal and set by fundamental physical constants. Here we
encounter the first example of what we mentioned in the Introduction: fundamental constants
impose bounds on condensed matter properties.

That viscosity minima of all liquids can be derived theoretically and turn out to be universal is
remarkable and unexpected for two reasons. First, the universal result applies to a variety of liquid
systems, with different structure, chemistry and intermolecular interactions. The second reason is
that in contrast to solids and gases, a general liquid theory was considered to be unworkable due
to fundamental problems involved. To appreciate the second point, we briefly review it below.

Properties of real liquids have proved to be particularly hard to understand and calculate the-
oretically. Common liquid models are inapplicable to understanding the energy and heat capacity
of real liquids. These models include notable workhorses of liquid physics: the widely discussed
Van der Waals mode and the hard-spheres model [14–17]. Both models give the specific heat
cv = 3

2 kB [18,19], the ideal-gas value, in contrast to experiments showing liquid cv = 3kB close
to melting [19–21]. These models were also used as reference states to calculate the energy (1)
by expanding interactions into repulsive and attractive parts (see, e.g. Refs. [22–26]). These parts
understandably play different roles at high and low density, however this method faces the prob-
lem that interactions and expansion coefficients are strongly system-dependent and so are the
final results, precluding a general theory. This is part of a more general problem stated by Landau,
Lifhitz and Pitaevskii and discussed below.

As stated by Landau, Lifshitz and Pitaevskii (LLP), the absence of a small parameter due to
the combination of strong interactions and the absence of small oscillations disallows a possi-
bility of calculating liquid thermodynamic properties in general form [18,27]. Lets consider the
calculation of liquid energy as

E = 3

2
NT + n

2

∫
g(r)u(r) dV (1)

where n is concentration, g(r) is the pair distribution function, u(r) is the interaction potential,
interactions and correlations are assumed to be pairwise. Here and below, kB = 1.

Since the interaction u(r) in liquids is both strong and system-specific, E in Equation (1)
is strongly system-dependent. For this reason, no generally applicable theory of liquids is
considered possible as discussed by LLP [18,27]. An additional difficulty is that interatomic
interactions and correlation functions are not available apart from fairly simple model liquids
such as Lennard-Jones systems and can be generally complex involving many-body, long-range
and hydrogen-bonded interactions. The interactions and correlation functions can be simulated
quantum-mechanically or obtained from experiments. This is a hard task which, if achievable,
reduces the predictive power of a theory. Even when g(r) and u(r) are available in simple
cases, the calculation involving Equation (1) is not enough: one still needs to develop a phys-
ical model explaining experimental temperature dependence of energy and heat capacity of real
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liquids [28]. Such a general model based on interactions and correlation functions (exemplified
by Equation (1)) has not emerged.

In solids, the above issues do not emerge because the solid state theory is based on collective
excitations, phonons. This theory is predictive, physically transparent and generally applicable to
all solids. There is no need to explicitly consider structure and interactions in order to understand
basic thermodynamic properties of solids. Most important results such as universal temperature
dependence of energy and heat capacity readily come out in the phonon approach to solids [18].
The simplifying small parameter in solids are small phonon displacements from equilibrium, but
this seemingly does not apply to liquids because liquids do not have stable equilibrium points
that can be used to sustain these small phonon displacements. Weakness of interactions used in
the theory of gases does not apply to liquids either because interactions in liquids are as strong as
in solids. This constitutes the no small parameter problem outlined by LLP [18,27].

It is therefore interesting to observe that earlier liquid theories and the solid state theory
diverged at the point of a fundamental approach. Early liquid theories [22,23,25,29,30] con-
sidered that the goal of the statistical theory of liquids is to provide a relation between liquid
thermodynamics and liquid structure and intermolecular interactions such as g(r) and u(r) in
Equation (1). Working towards this goal involved developing the analytical models for liquid
structure and interactions, which has become the essence of earlier liquid theories [14,16,31–
37]. The solid state theory, on the other hand, does not aim to predict the solid structure and its
characteristics such as g(r). For a given chemical composition, the structure can be predicted
in quantum-mechanical calculations [38,39] but not by a purely theoretical approach. Instead,
the structure is often an input to theory. Similarly, the solid state theory does not aim to predict
interatomic interactions. Some simple models of these interactions play a useful role in the solid
state theory, however the variety of interactions (ionic, covalent and their combinations, metallic,
dispersion, hydrogen-bond interactions and so on) belongs to the realm of computational physics
or chemistry rather than pure theory.

Although the approach to the liquid theory diverged from the solid state theory in its fun-
damental perspective, there were notable exceptions. Sommerfeld [40] and Brillouin [41–44]
considered that the liquid energy and thermodynamic properties are fundamentally related to
phonons as in solids and discussed liquid properties on the basis of a modified Debye theory of
solids. The first Sommerfeld paper discussing this was published only 1 year after the Debye
theory of solids [45] and 6 years after the Einstein’s paper “Planck’s theory of radiation and the
theory of the specific heat” in 1907 [46]. Apart from isolated attempts [20,32,47], this line of
enquiry has stalled in the years that followed, and liquid theories based on structure and interac-
tions were pursued instead. Whereas the Debye and Einstein theories have become part of nearly
every textbook where solids and phonons are mentioned, a theory of liquid thermodynamics has
remained unworkable for about a century that followed. One potential reason for this is that, dif-
ferently from solids, the nature of collective excitations in liquids remained unclear for a long
time.

As a result of these issues, theoretical calculation and understanding energy and heat capac-
ity of real classical liquids (both its values and temperature dependence) has remained a
long-standing problem in both research and undergraduate teaching [48–50].

The problems involved in liquid theory started to lift fairly recently and involved several steps.
The first step involved the consideration of microscopic dynamics of liquid particles provided by
the Frenkel theory [51]: differently from solids where particle dynamics is purely oscillatory
and gases where dynamics is purely diffusive/ballistic, particle dynamics in liquids is mixed and
combines oscillations around quasi-equilibrium points as in solids and diffusive motions between
different points. The second step was using the above microscopic dynamics to ascertain the
nature of excitations in liquids. At the fundamental level, physics of an interacting system is set
by its excitations or quasiparticles [18]. In solids, these are phonons. The nature of phonons and
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their properties in liquids were not clear for a long time since Sommerfeld first brought up this
issue in 1913 [40] (see, e.g. Ref. [52]). A fairly recent combination of theory, experiments and
modelling led to understanding the propagation of phonons in liquids with an important prop-
erty: the phase space available to these phonons is not fixed as in solids but is instead variable
[21,28,49,53]. This is a non-perturbative effect. In particular, the phonon phase space in liquids
reduces with temperature [28]. This result is consistent with findings in the numerical instanta-
neous mode approach [54]. The reduction of the phase space has a general implication for liquid
thermodynamic properties: specific heat of classical liquids universally decreases with temper-
ature, in agreement with experiments [21,28,53]. (In other approaches, the reduction of specific
heat was attributed to the singularity of the hard-sphere free energy functional [26] or accounted
for by considering the liquid energy as the weighted sum of solid and gas energies, with weights
numerically calculated from instantaneous normal modes [55]).

The theory leading to this picture is importantly based on considering the microscopic dynam-
ics of liquid molecules. As discussed in the next section, considering this dynamics is also the
key to understanding viscosity minima and calculating their values.

We note in passing that the energy of quantum liquids such as 4He is readily understood on
the basis of phonons. A quantum nature of this liquid interestingly turns out to be a simplifying
circumstance: any weakly perturbed quantum state is a set of elementary quantum excitations.
In Bose liquids, excitations can appear and disappear singly (in contrast to Fermi liquids where
excitations appear and disappear in pairs). The elementary excitations with small momenta p are
the sound waves, the phonons, with the linear dispersion relation ε = pc. Hence at temperature
close to zero, the elementary excitations are phonons, and the system energy is then the sum of
these excitations, resulting in cv ∝ T3 as in solids and in agreement with experiments. Landau
attributes this calculation to Migdal in 1940 [56].

2.2. Viscosity and dynamical crossover

We now discuss the microscopic origin of viscosity minima related to the crossover of particle
dynamics.

Viscosity of fluids, η, varies in a wide range, from about 10−6 Pa·s for the normal component
of liquid He [57] to about 1013 Pa·s in viscous liquids approaching liquid-glass transition at the
glass transition temperature Tg. η continues to increase below Tg too, however the corresponding
relaxation time becomes longer than experimental time. In the low-temperature liquidlike classi-
cal regime, η has no upper bound as a function of temperature. At temperature approaching zero,
η is limited by the temperature-independent frequency of particle tunneling.

η strongly (exponentially or faster) depends on temperature and pressure. η is additionally
strongly system-dependent and is governed by the activation energy barrier for molecular rear-
rangements, U. In turn, U is related to inter-molecular interactions and structure. This relationship
is in generally complicated, and no universal way to predict U and η from first principles exists.
Indeed, tractable theoretical models describe the dilute gas limit of fluids where perturbation the-
ory applies, but not dense liquids of interest here [58] (in field theories, viscosity can be evaluated
in the limit of weak and strong coupling [59,60]). In view of this and more fundamental problems
involved in liquid theory discussed in the previous section, it is quite remarkable that the mini-
mal value of liquid viscosity turns out to be nearly universal and set by the fundamental physical
constants.

Experimental viscosity η and kinematic viscosity ν = η

ρ
, where ρ is density, are shown in

Figure 1 for several noble (Ar, Ne and He), molecular (H2, N2, CO2, CH4, O2 and CO) and net-
work (H2O) fluids. For some fluids, we show η and ν at two different pressures. The low pressure
was chosen to be high enough and above the critical pressure so that viscosity is not affected by
near-critical anomalies. The high pressure was chosen to make the considered pressure range as
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Figure 1. Experimental dynamic viscosity η (a) and experimental kinematic viscosity ν (b) of noble, molec-
ular and network liquids [61] showing minima. η for H2, H2O and CH4 are shown for pressure P = 50 MPa,
100 MPa and 20 MPa, respectively. η for He, Ne, Ar and N2 are shown at two pressures each: 20 and
100 MPa for He, 50 and 300 MPa for Ne, 20 and 100 MPa for Ar and 10 and 500 MPa for N2. The
minimum at higher pressure is above the minimum at lower pressure for each fluid. From Ref. [62]. Copy-
right: the Authors, some rights reserved; exclusive licensee AAAS. Distributed under a Creative Commons
Attribution NonCommercial License 4.0 (CC BY-NC).

wide as possible and at the same time low enough in order to see the viscosity minima in the
temperature range available experimentally.

We now recall the origin of viscosity minima shown in Figure 1. In the liquid-like regime of
molecular dynamics at low temperature, η decreases with temperature as

η = η0 exp

(
U

T

)
(2)
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where η0 is a pre-factor and U can be temperature dependent.
In the gas-like regime of molecular dynamics, η is

η = 1

3
ρvL (3)

where ρ is density, v is average particle velocity and L is the particle mean free path.
For gases, L ∝ 1

ρ
and η ∝ v ∝ √

T [58]. Hence η increases with temperature without bound,
although new effects such as ionisation start operating at higher temperature. These can change
the system properties including η.

Consistent with Figure 1, Equations (2) and (3) imply that η should have a minimum.
Before calculating η at the minimum, it is useful to qualify the above terms “liquid-like”

and “gas-like” referring to different regimes of molecular dynamics and elaborate on condi-
tions at which the minima are seen. At low temperature, molecular motion in liquids combines
solid-like oscillations around quasi-equilibrium positions and diffusive jumps to new positions.
Enabling liquid flow, these jumps are thermally-activated events involving an energy barrier set
by inter-molecular interactions. This gives an exponential dependence in Equation (2). The dif-
fusive jumps are characterised by liquid relaxation time, τ , the average time between the jumps.
τ is related to η by the Maxwell relationship η = Gτ , where G is the high-frequency shear mod-
ulus [51]. τ decreases with temperature in the same way as η in Equation (2) and is bound by
the elementary vibration period, commonly approximated by the Debye vibration period in the
Debye model, τD. When τ approaches τD, the oscillatory component of molecular motion is lost,
and molecules start moving in a purely diffusive manner. On further temperature increase (or
density decrease), the motion remains purely diffusive, however molecules gain enough energy
to move distance L without collisions. In this gas-like regime, the fluid viscosity can be calculated
by assuming that a molecule moves in straight lines between collisions, resulting in Equation (3).

If temperature is increased at pressure below the critical point, the system crosses the boiling
line and undergoes the liquid-gas phase transition. As a result, η undergoes a sharp change at the
transition (we will return to this in Section 2.4), rather than a smooth minimum as in Figure 1.
In order to avoid effects related to the phase transition itself, it is convenient to consider matter
above the critical point, the supercritical state. Here, the supercritical Frenkel line (FL) formalises
the qualitative change of molecular dynamics from combined oscillatory and diffusive to purely
diffusive. Introduced about 10 years ago [63–65], the transitions at the FL has been confirmed in
several important supercritical fluids using different experimental techniques (see Ref. [66] for
review). The location of the minima of η can depend on the path taken on the phase diagram. As
a result, the minimum of η may deviate from the FL depending on the path.

2.3. Viscosity minima

We are now set to calculate viscosity at the minimum, ηmin. There are two ways in which this can
be done: considering the low-temperature limit of the gas-like viscosity (3) or taking the high-
temperature limit of the liquid-like viscosity given by the Maxwell relation η = Gτ . We start
with the first approach and consider how η = ρvL changes with temperature decrease (we drop 1

3
in (3) since the calculation evaluates the order of magnitude of viscosity minimum as discussed
in more detail below). L decreases on lowering the temperature and is bound by the UV cutoff
in condensed matter systems: inter-particle separation a. From this point on, L has no room to
decrease further. Instead, the system enters the liquid-like regime where η starts increasing on
further temperature decrease according to (2) because the diffusive molecular motion crosses
over to thermally-activated as discussed earlier. Therefore, ηmin approximately corresponds to
L ≈ a. When L becomes comparable to a, v in Equation (3) can be evaluated as v = a

τD
because
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the time for a molecule to move distance a in this diffusive regime is given by the characteristic
time scale set by τD. Setting L = a, v = a

τD
= 1

2π
ωDa and ρ ≈ m

a3 , where ωD is Debye frequency
and m is molecule mass, gives:

ηmin = 1

2π

mωD

a
(4)

We note that (3) applies in the regime where L is larger than a, hence the evaluation of
viscosity minimum is an order-of-magnitude estimation. This is consistent with other approxi-
mations made later. In this regard, we observe that theoretical models can only describe viscosity
in a dilute gas limit where perturbation theory applies [58], but not in the regime where L ≈ a
and where the energy of inter-molecular interaction is comparable to the kinetic energy. In view
of theoretical issues as well as many orders of magnitude by which η can vary, the evaluation
of its minimum is meaningful and informative. An order-of-magnitude evaluation is probably
unavoidable if a complicated property such as viscosity is to be expressed in terms of fundamental
constants only.

ηmin in (4) matches the result obtained by approaching the viscosity minimum from low
temperature in the liquid-like regime and considering the Maxwell relationship η = Gτ . In the
liquid-like regime, η and τ decrease with temperature according to (2), but this decrease is bound
from below because τ starts approaching the shortest time scale in the system set by the Debye
vibration period, τD. From this point on, τ has no room to decrease further, and the system enters
the gas-like regime where η starts increasing with temperature according to (3). This corresponds
to the crossover between the thermally-activated liquid-like and diffusive gas-like motion of
molecules discussed earlier. Therefore, the minimum of η can be evaluated by setting τ ≈ τD.
In the liquid-like regime, G can be estimated as G = ρc2, where c ≈ a

τD
is the speed of sound.

Then, ηmin = GτD = ρ a2

τD
= 1

2π
mωD

a as in Equation (4), where ρ = m
a3 is used as before.

We can check how well Equation (4) evaluates the minima of η in Figure 1. Taking char-
acteristic values a = 3 − 6 Å, ωD

2π
on the order of 1 THz and atomic weights 2–40 for liquids in

Figure 1, we find ηmin in the range 10−5 − 10−4 Pa · s. This is consistent with Figure 1(a). We
observe that high pressure reduces a and increases ωD. As a result, Equation (4) predicts that ηmin

increases with pressure, in agreement with the experimental behaviour in Figure 1(a).
The viscosity minima of strongly-bonded liquids such as liquids metals were not measured

due to their high critical points. Nevertheless, high-temperature η is close to 10−3 Pa·s for Fe
(2000 K), Zn (1100 K), Bi (1050 K) [67], Hg (573 K) and Pb (1173 K) and is expected to be
close to η at the minima. This is larger than ηmin in Figure 1 and is consistent with Equation (4)
predicting that ηmin decreases with a (a is smaller in metallic systems as compared to noble and
molecular ones in Figure 1(a)) and increases with molecular mass (mωD ∝ √

m).
It is convenient to use the kinematic viscosity ν. ν describes momentum diffusivity, analogous

to thermal diffusivity involved in heat transfer discussed in Chapter 3 and gives the diffusion
constant in the gas-like regime of molecular dynamics [51]. Another benefit of considering ν is
that it makes the link to the high-energy result discussed in Section 2.8, where η is divided by
the volume density of entropy. Using ν = η

ρ
= vL, v = 1

2π
aωD and L = a as before gives the

minimal value of ν, νmin, as

νmin = 1

2π
ωDa2 (5)

We now come to an important part of this discussion where we invoke fundamental physical
constants [62]. We recall that the properties defining the UV cutoff in condensed matter can
be expressed in terms of these constants. Two important properties are Bohr radius, aB, setting
the characteristic scale of inter-particle separation in condensed matter phases on the order of
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Angstrom:

aB = 4πε0�
2

mee2
(6)

and the Rydberg energy, ER = e2

8πε0aB
[68], setting the characteristic scale of cohesive energy in

condensed matter phases on the order of several eV:

ER = mee4

32π2ε2
0�2

(7)

where e and me are electron charge and mass.
Lets now recall the known ratio between the cohesive energy E and the characteristic phonon

energy, �ωD: �ωD
E . This ratio can be derived by approximating �ωD as �( E

ma2 )
1
2 , taking the ratio

�ωD
E and using a = aB from (6) and E = ER from (7). This gives, up to a factor close to 1:

�ωD

E
=

(me

m

) 1
2

(8)

The same ratio (8) follows by combining two known relations in metallic systems: �ωD
E ≈ c

vF
,

where vF is the Fermi velocity, and c
vF

≈ (me
m )

1
2 , providing an order-of-magnitude estimation �ωD

E
in other systems too [68].

Combining (5) and (8) gives

νmin = 1

2π

Ea2

�

(me

m

) 1
2

(9)

As mentioned earlier, a and E in (9) are set by their characteristic values aB and ER. Using
a = aB from (6) and E = ER from (7) in (9) gives a simple and good-looking result for νmin:

νmin = 1

4π

�√
mem

(10)

Equation (10) can be obtained without explicitly using aB and ER in (9). The cohesive energy,
or the characteristic energy of electromagnetic interaction, is

E = �
2

2mea2
(11)

Using (11) in (9) gives (10).
Another way to derive (10) is to consider the “characteristic” viscosity η∗ [69]:

η∗ = (Em)
1
2

a2
(12)

η∗ is used to describe viscosity scaling on the phase diagram: the ratio between viscosity and
η∗ is the same for systems described by the same interaction potential in equivalent points of
the phase diagram. For systems described by the Lennard-Jones potential, the experimental and
calculated viscosity near the triple point and close to the melting line is about 3 times larger than
η∗ [69,70]. Near the critical point, η∗ is about 4 times larger than viscosity and is expected to give
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the right order of magnitude of viscosity at the minimum at moderate pressure. The kinematic
viscosity corresponding to (12) is

η∗

ρ
= E

1
2 a

m
1
2

(13)

Using a = aB from (6) and E = ER from (7) in (13) gives the same result as (10) up to a
constant factor on the order of unity. As before, we can also use (11) in (13) to get the same
result.

Minimal viscosity in Equation (10) corresponds to maximal fluidity in the system.
We observe that νmin in (10) contains � and electron and molecule masses only. Lets consider

the implications of this in more detail.
The first observation is that viscosity is commonly considered as a classical property because

most liquids exist at high temperature and are classical. This is related to melting temperature
exceeding the Debye temperature in most systems. Yet the minimal viscosity is a quantum
property as follows from Equation (10). This is because viscosity it is governed by molecular
interactions, and these are ultimately set by quantum effects. Brazhkin has expanded on this
point in relation to viscosity and other properties of condensed matter [71].

Second, νmin interestingly does not depend on electron charge e, contrary to what one might
expect considering that viscosity is set by the inter-particle forces which are electromagnetic in
origin. Although e enters Equations (6), (7) and (11) for the Bohr radius, Rydberg and cohesive
energy, it cancels out in Equation (10) for νmin. We will return to this point later in Section 2.8.

Third, there are two masses in Equation (10), m and me. m characterises the molecules
involved in viscous flow. me characterises electrons setting the inter-molecular interactions. m
in (10) is m = Amp, where A is the atomic weight and mp is the proton mass. The inverse square
root dependence νmin ∝ 1√

A
interestingly implies that νmin is not too sensitive to the liquid type.

Setting m = mp (A = 1) for H in (10) (similarly to (6) and (7) derived for the H atom) gives
the fundamental kinematic viscosity νf in terms of �, me and mp as

νf = 1

4π

�√
memp

≈ 10−7 m2

s
(14)

Equation (14) is consistent with the experimental results in Figure 1(b). This shows how fun-
damental constants set the characteristic scale of physical properties. This includes complicated
properties such as viscosity which was not thought to be amenable to an analytical treatment. We
will revisit this point in Section 2.9.

We note that a relationship between fundamental constants and simpler properties such as
elastic moduli discussed in Chapter 5 was known and is not unexpected. For more complicated
properties such as viscosity discussed here, thermal diffusivity and speed of sound discussed in
Chapters 3 and 6, it remained unclear till fairly recently whether their characteristic values can
be directly related to fundamental constants. One of the aims of this review is to show how this
can be done.

νf depends on three parameters: �, me and mp, as illustrated in Figure 2. � and me are funda-
mental constants. Although mp depends on other Standard Model parameters, the dimensionless
number me

mp
is attributed a fundamental importance [1], as discussed in Section 2.6 in more detail.

The derivation of the viscosity minimum (10) and fundamental viscosity (14) involves more
than a dimensional analysis. First, the dimensionless analysis is not unique in the absence of a
physical model. As mentioned earlier, it is not apriori clear that νmin should involve � and be
a quantum property, especially so in view that most liquids are considered classical. Second, a
purely dimensional analysis can give a quantity with right dimensions but wrong value. Indeed,
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Figure 2. Fundamental kinematic viscosity depends on three values only: �, me and mp.

multiplying the right-hand side of Equation (10) by f ( m
me

), where f is an arbitrary function, gives
the result consistent with the dimensional analysis but produces any desired value of νmin with
a suitable choice of f. Third, we have used a specific physical model to derive νmin. We started
with attributing the viscosity minimum to the crossover of microscopic particle dynamics, from
combined oscillatory and diffusive to purely diffusive. This consideration led us to a particular
regime of particle dynamics where the particle speed is set by the interatomic separation and
elementary vibration period. Dimensional analysis alone does not have anything to say about
why would this regime correspond to the minimum of viscosity. We next evaluated the minimal
value of ηmin using two approaches involving the Maxwell relation and the gas kinetic theory.
Each of these approaches is based on a specific physical mechanism. We then related νmin to
the length and energy scales using the ratio �ωD

E = (me
m )

1
2 in Equation (8). The dimensionality

analysis does not predict this ratio and is consistent with �ωD
E taking any dimensionless number.

We finally expressed the length and energy scales in terms of fundamental constants. Most of
these steps involved in the derivation of Equation (10) are physically guided and incorporate a
lot more information that would be available from purely dimensional considerations.

In Table 1, we compare νmin calculated according to the theoretical prediction (10) to the
experimental νmin [61] for all systems shown in Figure 1. The ratio between experimental and
predicted νmin is in the range of 0.5–3. As expected, experimental νmin for the lightest liquid in
Table 1, H2, is close to the theoretical fundamental viscosity (14). In view of approximations
made, we observe that Equation (10) predicts νmin well.

Table 1 shows that νmin increases with pressure in Table 1, similarly to ηmin in Figure 1.
However, pressure dependence is not accounted in νmin in (10) since (10) is derived using
Equations (6)–(9) which do not account for the pressure dependence of ωD and E.

We add several other remarks regarding the comparison in Table 1. First, the important term
in Equation (10) is the combination of fundamental constants �, me and mp which set the char-
acteristic scale of the minimal kinematic viscosity, whereas the numerical factor may be affected
by the approximations used and mentioned earlier. Second, Equations (6)–(8) assume valence
electrons directly involved in chemical bonding and hence strongly-bonded systems, including
covalent, ionic and metallic liquids. Their viscosity in the supercritical state is generally unavail-
able due to high critical points. The available experimental data in Figure 1 and Table 1 includes
weakly-bonded systems such as noble, molecular and hydrogen-bonded fluids. Although bonding
in these systems is also electromagnetic in origin, weaker dipole and van der Waals interactions
corresponds to smaller E and, consequently, smaller η as compared to strongly-bonded ones, with
the viscosity of hydrogen-bonded fluids lying in between [72]. However, νmin in (9) contains the
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Table 1. Calculated and experimental νmin.

νmin (calc.) νmin (exp.)
×108 m2/s ×108 m2/s

Ar (20 MPa) 3.4 5.9
Ar (100 MPa) 3.4 7.7
Ne (50 MPa) 4.8 4.6
Ne (300 MPa) 4.8 6.5
He (20 MPa) 10.7 5.2
He (100 MPa) 10.7 7.5
N2 (10 MPa) 4.1 6.5
N2 (500 MPa) 4.1 12.7
H2 (50 MPa) 15.2 16.3
O2 (30 MPa) 3.8 7.4
H2O (100 MPa) 5.1 12.1
CO2 (30 MPa) 3.2 8.0
CH4 (20 MPa) 5.4 11.0
CO (30 MPa) 4.1 7.7

Notes: From Ref. [62]. Copyright: the Authors, some rights
reserved; exclusive licensee AAAS. Distributed under a Creative
Commons Attribution NonCommercial License 4.0 (CC BY-NC).

factor Ea2. E
1
2 is 3–10 times smaller and a is 2–4 times larger in weakly-bonded as compared

to strongly-bonded systems [72]. Hence the dependence of νmin on bonding type is weak. As a
result, the order-of-magnitude evaluation (10) is unaffected, as Table 1 shows.

More recently, the experimental viscosity of metallic liquids was discussed at high tempera-
ture in order to find limiting high-temperature value of Equation (2), η0, and compare it to the
bound (10) [73–75]. Although the bound (10) is related to the true minimum of viscosity and can
be several times larger than η0

ρ
due to the crossover between liquidlike and gaslike dynamics, the

closeness between the predicted bound (10) and experimental η0

ρ
was noted.

2.4. Elementary viscosity, diffusion constant and uncertainty relation

Corresponding to atomic H, Equation (14) gives the maximal value of the minimal kinematic
viscosity. It is interesting to find a viscosity-related quantity which has an absolute minimum.
This can be done by introducing the “elementary” viscosity ι (“iota”) defined as the product of
ηmin and elementary volume a3: ι = ηmina3 or, equivalently, as ι = νminm. Using (10), ι is

ι = �

4π

(
m

me

) 1
2

(15)

Equation 15 has the absolute lower bound, ιmin, for m = mp in H:

ιmin = �

4π

(
mp

me

) 1
2

(16)

which is on the order of � (ιmin ≈ 3.4�) and interestingly involves the proton-to-electron mass
ratio, one of few dimensionless combinations of fundamental constants of general importance
[1,10].

In Figure 3(a–b), we show the product νm in the units of � for two lightest liquids, H2 and
He, for which the minimum of νm, νminm = ι, should be close to the lower bound (16). νm is
calculated using the experimental viscosity and density data [61] and shown above and below the
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Figure 3. νm calculated from experimental kinematic viscosity [61] for H2 (a), He (b) and H2O (c) below
and above the critical pressure Pc. Pc = 1.3 MPa for H2, 0.23 MPa for He and 22 MPa for H2O. The smallest
value of νm, ι, is consistent the lower bound (16). From Ref. [62]. Copyright: the Authors, some rights
reserved; exclusive licensee AAAS. Distributed under a Creative Commons Attribution NonCommercial
License 4.0 (CC BY-NC).



Advances in Physics 483

critical pressure Pc. For He, the temperature range is above the superfluid transition (we do not
consider superfluidity here).

We observe that the liquid-gas phase transition results in sharp changes of viscosity below Pc.
For H2, the minimum of νm is kinked as a result and, starting from the lower pressure, decreases
with pressure up to Pc. This is followed by the minimum becoming smooth and increasing above
Pc. The smooth minimum just above the critical point (where the derivation of ηmin and νmin,
assuming a smooth variation of viscosity, applies) is very close to the minimum at Pc. For He,
the minimum similarly increases with pressure above Pc and weakly varies below Pc.

The smallest value of νm, ι = νminm, in Figure 3(a–b) is in the range (1.5–3.5)� for He and
H2. This is consistent with the estimation of the lower bound of ι, ιmin in (16). Given that νm
varies 4–6 orders of magnitude in Figure 3, the agreement with Equation (16) is notable.

We also show νm for common H2O in Figure 3(c) as a useful reference and include the triple
and critical point in the pressure range. The behaviour of νm is similar to that of H2, with ι of
about 30�. Similarly to H2 and He, the smooth minimum just above Pc is very close to that at
Pc. This implies that the viscosity minimum applies to both supercritical fluids and subcritical
liquids. We will return to this point in the next Section.

ι is a convenient property to discuss the uncertainty relation and its implication for the lower
bound. As discussed in the previous section, the minimum of ν can be evaluated as νmin = va,
corresponding to ι = mva = pa, where p is particle momentum. According to the uncertainty
relation applied to a particle localised in the region set by a, ι ≥ �. This is consistent with the
bound ιmin in (16), although a more general Equation (15) gives a stronger bound which increases
for heavier molecules.

An important difference of the lower bound (10) or (15) and bounds based on the uncertainty
relation [76–81] or other mechanisms [82] in earlier discussions is that (10) and (15) correspond
to a true minimum as seen in Figure 1 (in a sense that the function has an extremum), whereas
the uncertainty relation compares a product (px or Et) to � but the product does not necessarily
correspond to a minimum of a function and can apply to a monotonic function. We will return to
this point in Section 2.8.

The uncertainty relation can also used to evaluate the diffusion constant D and its lower
bound in the gaslike regime of particle dynamics (the upper bound on diffusion constant related
to relativistic effects was also discussed [83]). In the gaslike and liquidlike regimes of particle
dynamics (see Section 2.2), D = ν and D ∝ 1

ν
, respectively [51]. This implies that, differently

from η and ν, D does not have a minimum and monotonically increases with temperature, albeit
with a crossover at the Frenkel line marking the transition from gaslike to liquidlike dynamics as
discussed in Section 2.2. However, the lower bound in the gaslike regime can be found by using
the same approach we used for viscosity minimum earlier and by equating the particle mean to a:
Dmin = νmin = va. Combining this with the uncertainty relation pa ≥ �, we find the lower bound
of D as

Dmin ≥ �

m
(17)

Equation (17) is found to be consistent with diffusion experiments in Fermi gases [84].

2.5. The Purcell question: why do all viscosities stop at the same place?

In 1977, Purcell noted that there is almost no liquid with viscosity much lower than that of water
and observed (original italics preserved) [85]:

The viscosities have a big range but they stop at the same place. I don’t understand that.
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In the first footnote of that paper, Purcell says that Weisskopf has explained this to him. We
did not find published Weisskopf’s explanation, however the same year Weisskopf published the
paper “About liquids” [86]. That paper starts with a story often recited by conference speakers:
imagine a group of isolated theoretical physicists trying to deduce the states of matter using
quantum mechanics only. They are able to predict the existence of gases and solids, but not
liquids.

Earlier discussion in this Chapter helps answer the Purcell question. The answer has two
parts. First, viscosities “stop” because they have minima. Second, the minima are fairly fixed by
fundamental physical constants: these constants help keep νmin in Equation (10) from moving up
or down too much [87]. νmin are not universal due to νmin ∝ 1√

m
mass dependence, although this

does change νmin too much for most liquids. This includes liquids listed in Table 1.
For different fluids such as those in Figure 1 and Table 1, Equation (10) predicts νmin in the

range (0.3–1.5)·10−7 m2

s . This is somewhat lower, but not far, from ν in water at room conditions.
Water at ambient conditions happens to be runny enough and close to the minimum. This is what
Purcell noted: viscosities of most liquids do not go much lower than in water.

An interesting implication of this discussion is related to our everyday experience in which
we deal with water and water-based substances. We have earlier seen that water viscosity is not
far from what Equation (14) predicts. This prompts an interesting thought: our daily experience
is set by three fundamental constants in Equation (14). We will find similar examples later on in
this review.

In Section 2.3, the lower viscosity bound ηmin or νmin was related to a smooth viscosity mini-
mum such as that shown in Figure 1. The smoothness was due to the crossover in the supercritical
state where no liquid-gas phase transition intervenes. If we are below the critical point, ν still has
a minimum, albeit with a jump as is seen in Figure 3. This Figure also shows that the smallest
value of all minima involving jumps below the critical pressure nearly coincides with the low-
lying smooth minimum above the critical point. Therefore, the lower viscosity bound applies to
both the subcritical and supercritical liquids. This is relevant to the Purcell question: although
he did not specify which liquids he examined, he was probably referring mostly to subcritical
liquids.

2.6. Fundamental constants, quantumness and life

We recall the fundamental physical constants appearing in Equations (10) and (14) including
� and me. These and other constants form dimensionless fundamental constants which do not
depend on the choice of units and which play a special role in physics [1]. Two important num-
bers are the fine structure constant α = e2

�c and the electron-to-proton mass ratio, me
mp

. As discussed

in the introduction, the finely-tuned values of α and me
mp

, and the balance between them, governs
nuclear reactions and nuclear synthesis in stars, leading to the creation of the essential biochem-
ical elements, including carbon, and molecular structures essential to life. This balance provides
a “habitable zone” in the parameter space (α, me

mp
) where stars and planets can form and life-

supporting molecular structures can emerge [1]. For this reason, Barrow calls these constants
“bio-friendly” and Adams refers to our Universe as “biophilic”.

On the basis of Equation (10) or Equation (14), we can add another observation. The currently
observed fundamental constants are friendly to life at a higher level too: biological processes,
including those in and between cells rely heavily on motion (both motion under external gradient
and diffusive motion) provided by water and biological fluids. Lets consider what would happen
if fundamental constants were to take different values. According to Equation (10), the minimum
of ν and hence the minimum of η will change accordingly. To be more specific, let’s write the
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linearised Navier-Stokes equation as

ρ
∂v
∂t

= −∇p + η∇2v (18)

where v is the fluid velocity which is assumed to be small and p is pressure.
For time-dependent flow, the solution of Equation (18) depends on kinematic viscosity η

ρ
. For

simplicity, we consider steady flow where the flow velocity depends on η. Using ηmin = νminρ,
ρ ∝ m

a3
B

, m ∝ mp and Equations (6) and (10), we find

ηmin ∝ e6

�5

√
mpm5

e (19)

Let’s consider diffusive processes in and between cells. These processes correspond to
the low-temperature liquidlike dynamics involving combined oscillatory and diffusive particle
motion (see Section 2.2). In this regime, the Stokes-Einstein equation relates η and diffusion
constant D as [51]:

D = T

6πrη
(20)

where r is the radius of moving particle.
The minimal viscosity in Equation (19) then gives the largest D attainable in the system and

limits diffusion from above.
Lets consider what happens if we dial � and set it smaller than the current value. ηmin in

Equation (19) is quite sensitive to � and increases if � is smaller. Raising the viscosity minimum
implies that viscosity of all liquids increases, at all conditions of pressure and temperature. Larger
viscosity means that water now flows slower, dramatically affecting life processes such as blood
flow, vital flow processes in cells, inter-cellular processes and so on. This applies to all liquids
and hence all life forms relying on liquids as the medium to provide motion and flow.

At the same time, diffusion strongly decreases, implying slowing down of all diffusive pro-
cesses of essential substances and molecular structures in and across cells. This affects, for
example, protein mobility, active transport involving protein motors and cytoskeletal filaments,
molecular transport, cytoplasmic mixing, mobility of cytoplasmic constituents and sets the lim-
its at which molecular interactions and biological reactions can occur. Diffusion is also essential
for cell proliferation. These processes have been of interest in life, biomedical and biochemical
sciences (see examples in Refs. [88,89]).

Physically, the origin of this slowing down due to smaller � is related to the decrease of the
Bohr radius (6) as the classical regime with smaller � is approached. This results in the increase
of the cohesive energy in Equation (7) via Equation (11), making it harder to flow and diffuse.

Large viscosity increase (think of viscosity of tar or higher) may mean that life might not
exist in its current form or not exist at all. One might hope that cells could still survive in such
a Universe by finding a hotter place where overly viscous and bio-unfriendly water is thinned.
This would not help though: ηmin sets the minimum below which viscosity can not fall regardless
of temperature or pressure. This applies to any liquid and not just water and therefore to all life
forms using the liquid state to function.

We therefore see that water and life are well attuned to the degree of quantumness of the phys-
ical world (in conjunction with other fundamental constants and parameters). The same applies
to other fundamental constants in Equation (19) such as e, me and to a smaller degree to mp.
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The results in this Chapter add another layer to the discussion of the anthropic principle,
sometimes referred to as the anthropic argument [9] or anthropic observation [90]. Eliciting dif-
ferent views [1–4,8–10,90,91], this term is a collection of related ways to rationalise the observed
values of fundamental constants by proposing that these constants serve to create conditions for
an observer to emerge and hence are not unexpected. Developing this argument often involves
an ensemble of disjoint universes and a physical mechanism to generate this ensemble. Then, a
relatively small number of universes have the right values of fundamental constants, and we find
ourselves in one of those universes and measure those constants. Alternatives include introduc-
ing the natural selection argument in cosmology, explaining the observed values of fundamental
constants [90].

In these discussions, there are several types of conditions that need to be met for life and
observers to exist. These conditions involve the range of effects, starting from cosmological pro-
cesses and ending with nuclear synthesis discussed in the Introduction. Nuclear reactions are
high-energy processes. Condensed matter physics involves much lower energies, and our earlier
discussion showed how fundamental constants govern water viscosity. This adds a biological and
biochemical aspect to the discussion of the anthropic principle. We can ask what change of water
viscosity and diffusion constant from their current values is needed to disable cellular and inter-
cellular biological processes essential to life. For example, this can happen if water became too
viscous due to the lower viscosity bound getting larger, necessitating higher viscosity at all con-
ditions. Once this is known, we can readily calculate the corresponding change of fundamental
constants setting this lower bound using, for example, Equation (19).

One might think that the constraints on fundamental constants from star formation or nuclear
synthesis are already tight enough to keep water viscosity from taking unwanted values not con-
ducive to life. There are two points to consider here. First, it is possible to substantially change
the lower bounds for kinematic and dynamic viscosity and at the same time keep the fine structure
constant α = e2

�c and the electron-to-proton mass ratio β = me
mp

intact, with no consequences for
star formation and nuclear synthesis.

Second, different effects involved in the existing hierarchy of observed fundamental constants
and operating at different levels [1,3,4] have different tolerance to life-disabling variations [9,13].
A small, compared to large, range of allowed fundamental constants is interesting because it tells
us how special our Universe is and sets the weight of the anthropic argument. We have seen
that sustaining liquid-based life (including water-based life) imposes constraints on fundamental
physical constants which are additional to and different from what has been discussed before in
nuclear synthesis. These constraints come from condensed matter physics and involve biology
and biochemistry, adding a higher level to the hierarchy of life-enabling effects [1–4]. It remains
to be seen how tight these constraints are compared to constraints discussed in particle physics,
astronomy and cosmology.

Exploring these and related issues further is important and invites an inter-disciplinary
research. This interdisciplinarity has previously included some chemical and biochemical aspects
of life [2,92,93], however the overall focus was on particle physics, astronomy and cosmology
and on production of heavy elements in stars [1,2,5,6,8–10,92]. On the other hand, fundamen-
tal insights from condensed matter physics were not explored, and this overview illustrates the
benefits of this consideration.

It is useful to note that testability and falsifiability of a physical model involved in the current
discussions of the anthropic principle is a central issue [90]. On the other hand, the physical model
underlying the viscosity minima comes from condensed matter physics with plentiful opportuni-
ties to test and falsify it. As we have seen earlier, the physical model underlying viscosity minima
benefits from agreeing with a wide range of experimental data.
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2.7. Quantum liquids

Quantum liquids are liquids where the effects of quantum statistics, Fermi or Bose, become oper-
ative at low temperature on the order of ∼ 1 K. Quantum liquids is a large area of research with
long history where superfluidity in liquid helium plays an important role [18,94].

Despite this long history, some central problems remain not understood. Pines and Nozieres
observe [94] that “microscopic theory does not at present provide a quantitative description of
liquid He II” (“II” here refers to helium below the superfluid transition temperature of about
2.2 K). This is in contrast to superconductivity where superconducting properties emerge from
a microscopic Hamiltonian. For quantum fluids, a microscopic theory exists only for models
of dilute gases or models with weak interactions where perturbation theory applies such as the
Bogoliubov theory. Griffin broadly agrees with the assessment of Pines and Nozieres and says
that we can’t make quantitative predictions of superfluid 4He on the basis of existing theories and
depend on experimental data for guidance [95]. Interestingly, Griffin attributes the theoretical
problems of understanding the superfluid He to the “difficulties of dealing with a liquid, whether
Bose-condensed or not”. In other words, he recognises that the general problems of liquid theory
discussed in Chapter 2: the no-small parameter problem related to the combination of strong
interactions and dynamical disorder.

Compared to several decades ago, research into liquid helium superfluidity has been slowing
down. We have a set of important results and we know that several fundamental problems remain
unresolved but we don’t know where the next important insight is likely to come from. One
insight we learned from classical liquids is that considering microscopic details of their dynamics
and the combined oscillatory and diffusive components of particle motion in particular is the key
to understanding liquids. This motion governs collective excitations, phonons, in liquids which,
in turn, govern liquid thermodynamic properties [28]. It may well be that these dynamical details
will similarly need to be incorporated in the future microscopic theory of liquid helium.

In Chapter 2, we used the microscopic mechanism of molecular motion in liquids to derive
lower bound of liquid viscosity. In view of the need for microscopic theory of liquid helium, it
is interesting to see whether we can discuss the minima of He viscosity on the basis of the same
molecular mechanism as in classical liquids.

In Figure 4, we have compiled several sets of experimental data related to liquid 4He. The
data represented by finely-spaced points and lines above the superfluid transition temperature
Tc = 2.17 K (λ-point) are from NIST [61]. These plots include interpolation artefacts at low
temperature. These are usually unimportant in a wider temperature range, however here we are
interested in liquid helium which exists in a narrow temperature range. For this reason, we also
show the experimental points on which the NIST curves are based [96] as bullet points. We also
show viscosity of He II below Tc, attributed to the normal component with non-zero viscosity
[57]. The kinematic viscosity is calculated using density from Ref. [96].

There are several observations from Figure 4. First, we observe that viscosity have minima in
both phases of He, He I and He II, similarly to other classical liquids in Figure 1. Similar viscosity
minima are also seen in 3He [97].

We next observe that in He I above the critical pressure (Pc = 0.23 MPa), viscosity minima in
Figure 4 (especially the minima of kinematic viscosity) are not far from those seen in Figure 1 in
classical liquids. The minima are somewhat lower in helium because (a) the pressure in Figure 4 is
lower and (b) viscosity minima in helium are understandably lower than in other liquids because
the inter-particle interactions in He are particularly weak. Similarly to Figure 1, viscosity minima
increase with pressure. Second, viscosity has a jump due to the liquid-gas transition in the sub-
critical regime. The jump starts close to the viscosity minima in the supercritical regime at 1 and
3 MPa. The viscosity still have minima, albeit these are not smooth as in the supercritical state.
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Figure 4. Dynamic (top) and kinematic (bottom) viscosity of liquid 4He above and below the λ-point at
about 2.2 K. Dotted lines are from Ref. [61]. Solid circles are from Ref. [96]. Open diamonds correspond to
viscosity of He II at atmospheric pressure from Ref. [57].

This behaviour is similar to that in Figure 3(b). Third, although the viscosity minimum of He II
is lower than in the liquid He I at atmospheric pressure by about a factor of 2-3 for both dynamic
and kinematic viscosity in Figure 4 (this can be attributed to He II considered to be a mixture of
normal and superfluid components, see Refs. [56,94,98–100] for original papers and reviews), it
is of the same order of magnitude.

Earlier in this Chapter, we showed that viscosity minima in classical liquids are set by funda-
mental physical constants. The similarity between viscosity minima in He I and He II in Figure 4
suggests that the minimum in He II is similarly set by these constants. This, in turn, indicates that
the mechanism setting the viscosity minimum in He II may be similar. Indeed, the calculation
of the viscosity minima in terms of fundamental constants in Section 2.3 is based on a partic-
ular regime of particle dynamics corresponding to the crossover between liquidlike and gaslike
regimes. The closeness of calculated and observed viscosity minima is therefore informative in a
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sense of microscopic dynamics: viscosity decreasing with temperature is related to the combined
oscillatory and diffusive particle motion, whereas viscosity increasing with temperature is indica-
tive of purely diffusive motion. This picture is consistent with path-integral simulations of He: the
minima of velocity autocorrelation function, associated with the liquid-like combined oscillatory
and diffusive motion [65], are seen at 1.2 K [101] where viscosity decreases in Figure 4.

Clearly more work is needed to ascertain the nature of microscopic motion in liquid He and
its relation to observed properties including superfluidity. Here, we see how the discussion of
viscosity minima, their origin and value in terms of fundamental constants has the potential to
provide interesting insights into microscopic dynamics in quantum liquids. This is important
in view of constructing a microscopic theory of He II. Earlier in this section, we quoted the
observation of Pines and Nozieres of the absence of a microscopic theory of He II. Such a theory
would have to incorporate the microscopic particle of dynamics in liquid helium, and viscosity
minima provide an insight into this dynamics.

Previously, the behaviour of helium viscosity was discussed in terms unrelated to microscopic
dynamics of particles. Landau and Khalatnikov calculated viscosity due to scattering of phonons
and rotons by each other, with the result that viscosity decreases with temperature [102]. This
includes a provision that this result does not hold in the range where viscosity increases with
temperature because of the proximity of the λ-point. Tisza, on the other hand, considered part
of temperature range where viscosity increases with temperature, and attributes it to the gas-
like behaviour described by the gas kinetic theory. This was done in one of Tisza’s pioneering
papers [98] introducing the two-fluid model of liquid helium (see Refs. [94,99,100] for review
of the two-fluid model). Dash [103] considers the entire regime where viscosity first decreases,
goes through the minimum and then increases as in Figure 4 and explains this non-monotonic
behaviour by combining the Landau and Khalatnikov model with the model where viscosity
increases due to the increasing normal fluid fraction.

2.8. Quark-gluon plasma

Differently from condensed matter systems, the subject of this review, the quark-gluon plasma
(QGP) [104] is a high-energy system. It is nevertheless interesting to mention the QGP here, for
two reasons. First, a bound for viscosity-related property was proposed for the QGP. Second,
the kinematic viscosity of the QGP is remarkably close to the viscosity minima discussed in
Section 2.3.

In Section 2.2, we mentioned fundamental problems involved in liquid theory due to strong
interactions. The same problem exists in strongly-coupled field theories where the perturbation
theory does not apply. In some cases, it is possible to derive closed results using the duality
between strongly-coupled field theories and weak gravity (see, e.g. Rev. [105] for review). Using
this approach, the lower bound for viscosity-to-specific entropy ratio was derived as [106]:

η

s
≥ �

4π
(21)

where s is the volume density of entropy.
The bound (21) was referred to as the “perfect fluidity” and is being explored in different sys-

tems, including strongly-interacting Bose liquids, ultracold Fermi gases and quark-gluon plasma
[107]. This extends to the viscosity of quasiparticles in graphene [108]. Later work considered
how this and other bounds can be understood in the picture involving the Planckian relaxation
time

τP = �

T
(22)
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and related these and connected ideas to condensed matter systems including electron and spin
transport properties [74,76,77,79–81,109–112] as well superconductivity and superfluidity [113].

τP sets the limiting value of the relaxation time at a given temperature. In this sense, it is
different from other bounds discussed in this review which are independent of external parameters
and are set by fundamental physical constants.

The viscosity of the QGP has been measured experimentally: η = 5 · 1011 Pa·s [107].
Although η is about 15 orders of magnitude larger than the viscosity of water at room conditions,
the kinematic viscosity of the QGP is [104]

ν
exp
QGP ≈ 10−7 m2

s
(23)

and is close to the viscosity minima of ordinary liquids in Figure 1(b) as well as fundamental
viscosity in Equation (14).

This similarity is remarkable, given the 15 orders of magnitude difference in η and that the
two systems have disparate interactions and fundamental theories. A hint for this remarkable
similarity comes from the universality of the dynamical crossover discussed in Section 2.2. At
the crossover, particle dynamics is neither liquidlike with many oscillations and occasional jumps
nor gaslike where L 
 a, but instead is at the border between the two regimes. At this border,
kinematic viscosity turns out to be fixed by the fundamental constants only and independent of
charge as mentioned in Section 2.3. This can help explain the similarity of νmin of ordinary liquids
and the quark-gluon plasma [104]. This also suggests that the QGP may be close to the dynamical
crossover in the sense discussed in Section 2.2.

The similarity of ν between the QGP and liquids at the minimum interestingly suggests that
the flow properties of these disparate systems is similar. This is seen from the Navier–Stokes
Equation (18) or its relativistic analogue [104].

The lower bound of the ratio (21) was interestingly compared to real liquids such as N2 and
H2O and found to be about 25 times smaller than viscosity minima in liquids. Most of this differ-
ence can be understood on the basis of elementary viscosity ι (15) which serves as an analogue of
η

s in (21) because ι is the ratio of viscosity and number density 1
a3 . The origin of this difference is

the presence of the factor ( m
me

)
1
2 in Equation (15) [62]. This factor is specific to condensed matter

and does not feature in Equation (21) derived from a theory based on holographic correspondence
and string theory.

2.9. What is “fundamental”?

In this Chapter, we have discussed bounds to viscosity set by fundamental physical constants.
There is a truly fascinating history of earlier and ongoing effort to understand the origin and
rationalise the values of fundamental constants including the dimensionless ones such as the fine
structure constant α, proton-to-electron mass ratio me

mp
and so on [1,10]. A possibility was raised

that the fundamental constants might not even be fixed and vary in different epochs [1,114],
and some related experimental evidence was discussed [115,116]. Understanding fundamental
constants is viewed as one of the grandest challenges in modern science [11].

Commenting on prospects to understand fundamental constants, Weinberg observes that the
membership of fundamental constants depends on a theory or effects considered [12]. Viscosity
of water serves as “fundamental” in hydrodynamics, whereas electron mass and electron charge
play that function in atomic physics. There are perhaps two senses in which the term “funda-
mental” is discussed here. First, the hydrodynamic theory makes predictions about liquid flow
and involves viscosity as a pre-determined parameter whose calculation can not be done and is
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not required in the hydrodynamic theory itself. Second, we can ask whether this or other similar
parameter can be calculated on the basis of another, more fundamental, underlying theory. There
is currently a limit to how fundamental we can go: calculating fundamental physical constants
can not currently be done not because the calculation is too complicated (as for the viscosity of
water, notes Weinberg), but because we don’t know of anything more fundamental. On the other
hand, condensed matter physics should in principle be able to provide tools to calculate water
viscosity, although this remained very hard in view of general issues involved in liquid theory
and viscosity in particular as discussed in Section 2.2.

The results in this Chapter suggest that despite difficulties involved in calculating viscosity
as a “fundamental” parameter in fluid mechanics, viscosity is nevertheless governed by true fun-
damental physical constants (see Equation (14)). These constants set bounds for viscosity and its
values in a fairly wide range of parameters on the phase diagram.

3. Thermal conductivity

3.1. Thermal conductivity of insulators and dynamical crossover

In this Section, we consider a property different to viscosity: the ability to conduct heat. We
consider insulating systems where the conductivity is due to ions. In Chapter 3.3, we discuss
thermal conductivity by electrons.

Thermal energy can be carried by phonons and electron quasi-particles in solids and liquids
or molecular collisions in gases [58,68]. Although these two mechanisms of heat transfer, by
collective excitations or particles, are conceptually simple, they can interestingly interact with
other processes and give rise to a rich variety of effects. These effects are currently explored in
a variety of materials including insulators, strange metals and cuprate superconductors, where
new mechanisms are invoked to explain the experimental data (see, e.g. Refs. [76,77,80,109]).
This involves bounds on thermal conductivity based on uncertainty relations and often involve
temperature-dependent Planckian relaxation time τP = �

T mentioned in Section 2.8.
Thermal conductivity κ is defined as the proportionality coefficient between the heat current

density and the temperature gradient (e.g. Jx = κxx
∂T
∂x in the x-direction). The propagation of heat

is given by the heat equation

∂T

∂t
= α

∂2T

∂x2
(24)

where α = κ
ρcp

is thermal diffusivity, ρ is density and cp is heat capacity per mass unit.
Equation (24) is analogous to the Navier-Stokes Equation (18). Similarly to the kinematic

viscosity governing flow in Equation (18), α quantifies the propagation of thermal energy.
Similarly to viscosity, the heat transport coefficients κ and α vary in a wide range and depends

strongly on the system, temperature and pressure. Yet we will see below that the lower bound of
these properties is identical to that of viscosity.

We have collected available experimental data [61] of κ in several noble (Ar, Ne, He and
Kr), molecular (N2, H2, O2, CO2, CH4 C2H6 and CO) and network fluids (H2O). This selection
includes industrially important supercritical fluids such as CO2 and H2O. We have calculated
α = κ

cρ using the experimental values of cp and ρ and show both κ and α in Figure 5. For some
fluids, we show the data at two different pressures. As in the case of viscosity in Figure 1, the
low pressure was chosen to be sufficiently far above the critical pressure so that the data are not
affected by near-critical anomalies. The high pressure was chosen to (a) make the pressure range
as wide as possible and (b) be low enough in order to see the minima in the available temperature
range.
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Figure 5. Experimental thermal conductivity κ (top) and thermal diffusivity α (bottom) of noble, molecular
and network liquids [61] showing minima. κ and α for Kr, O2, H2O, CH4, C2H6 and CO are shown for
pressure P = 30 MPa, 30 MPa, 70 MPa, 20 MPa, 20 MPa and 20 MPa, respectively. η for Ar, Ne, He, N2,
H2 and CO2 are shown at two pressures each: 20 and 100 MPa for Ar, 50 and 300 MPa for Ne, 20 and
100 MPa for He, 10 MPa and 500 MPa for N2, 50 MPa and 100 MPa for H2, and 30 and 90 MPa for CO2.
The minimum at higher pressure is above the minimum at lower pressure for each fluid. Reproduced from
Ref. [117] with permission from the American Physical Society.

We observe that κ and α universally have minima, similarly to viscosity in Figure 1. We
also observe that κ can have maxima at low temperature related to the competition between
the increase of heat capacity due to phonon excitations in the low-temperature quantum
regime and decrease of the phonon mean free path l as in solids. In H2O, the broad maxi-
mum is related to water-specific anomalies including broad structural transformation between
differently-coordinated states.
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We now discuss the reason why κ and α have minima in Figure 5. In solids and systems where
heat is carried by phonons, the thermal conductivity κ is κ = cvl, where c is the specific heat per
volume unit [68], v is the speed of sound, l is the phonon mean free path and we dropped the
numerical factor on the order of unity. Then, thermal diffusivity α is

α = vl (25)

In gases, α can be written in the same way as (25), but – and this reflects the difference
between heat transfer in solids and gases – v in (25) corresponds to the average velocity of gas
molecules and l to the molecule free path [58].

We can now see that the minimum of α is due to the dynamical crossover between the liquid-
like and gas-like regimes of particles dynamics discussed in Section 2.2. The liquid phonon states
consist of one longitudinal mode and two transverse modes propagating above the threshold
value in ω or k-space [28]. Temperature increase has two effects on α in Equation (25): both the
phonon mean free path l and the speed of sound v decrease. However, the decrease of v and l
can not continue indefinitely: l is limited by either the phonon wavelength [118] or its shortest
value comparable to the interatomic separation a (see the discussion of the reduction of l close to
a by Kittel [119] in disordered glasses). Similarly, v decreases with temperature at the dynamical
crossover discussed in Section 2.2 where it becomes comparable to the particle thermal speed at
the Frenkel line, vt. At this crossover, the oscillatory component of molecular motion in liquids
is lost, and molecules start moving in a purely diffusive manner. In this regime, l becomes the
particle mean free path, lp. lp and vt both increase with temperature. Therefore, α in Equation (25)
has a minimum.

The same mechanism leading to a minimum applies to κ = cρα. ρ and c monotonically
decrease with temperature [28], hence the minima of α and κ can take place at somewhat different
temperature.

Before evaluating αmin, let us see how well we can estimate κ at the minimum, κmin. The
speed of sound v in the Debye model is v = a

τD
(at the crossover where τ becomes comparable

to the time it takes the molecule to move distance a and where τ ≈ τD as discussed above, v
becomes approximately equal to thermal velocity). Recalling that c featuring in κ = cvl is the
temperature derivative of energy density [68], c = cv

a3 , where cv is heat capacity per atom at con-
stant volume (if the derivative is taken at constant volume) and a−3 is the concentration. At the
minimum corresponding to the dynamical crossover at the Frenkel line, cv is close to 2, reflecting
the disappearance of two transverse modes [28]. Setting l = a, v = a

τD
= 1

2π
ωDa, where ωD is

Debye frequency, gives

κmin = 1

π

ωD

a
(26)

Taking the typical values of a = 3 − 6 Å ωD
2π

on the order of 1 THz and reinstating kB, we find
κmin in the range 0.05 − 0.09 W

mK . This is consistent with typical values seen in Figure 5(a). We
also observe that high pressure reduces a and increases ωD in Equation (26), hence we predict
that κmin increases with pressure as a result. This is in agreement with the experimental behaviour
in Figure 5. Another prediction of Equation (26) is the reduction of κmin with mass m due to
ωD ∝ 1√

m
. Consistent with this prediction, κmin in Figure 5(a) tend to be lower for heavier systems

such as Kr.
We note that the minima of κ of most liquids in Figure 5(a) are still lower than thermal con-

ductivity in low-κ solids such as SnSe (κ = 0.23 W
mK ) where it is considered to be exceptionally

low [120]. For Kr, κmin is about 10 smaller than the ultralow value of κ in SnSe.
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3.2. Lower bound on thermal diffusivity

We now evaluate α at its minimum, αmin. As discussed above, l ≈ a at the minimum at the
dynamical crossover. Using v = a

τD
= 1

2π
aωD in Equation (25) as before gives

αmin = 1

2π
ωDa2 (27)

Equation (27) is the same as νmin in Equation (5) in Section 2.3. Therefore, repeating the same
steps as in Section 2.3, we find [117]:

αmin = νmin = 1

4π

�√
mem

(28)

giving rise to the fundamental thermal diffusivity αf as in Equation (14):

αf = 1

4π

�√
memp

≈ 10−7 m2

s
(29)

Equation (29) is consistent with the experimental results in Figure 5(b). Similarly to viscosity
discussed in Chapter 2, this shows how fundamental constants set the characteristic scale of
physical properties including complicated ones such as thermal conductivity and diffusivity.

The prediction of Equation (28) can be compared to experiments. In Table 2 we compare
αmin calculated according to (28) to the experimental νmin [61] for all liquids shown in Figure 5.
The ratio between experimental and predicted αmin is in the range of about 0.9–4. The ratio is the
largest for fluids under high pressure (e.g. N2 at 500 MPa and Ar at 100 MPa) which Equation (28)
does not account for. For the lightest liquid, H2, experimental αmin is close to the theoretical
fundamental thermal diffusivity viscosity (27). We therefore find that (28) is consistent with the
experimental data, with caveats discussed in Section 2.3 related to approximations involved.

The closeness of the minima of both properties, αmin and νmin in Equation (29) is unexpected
and surprising. Indeed, viscosity and thermal conductivity are physically distinct properties. They
are measured in very different experiments. Yet Equation (29) predicts that their minima should
be the same.

This prediction is checked in Table in 2 where ν at the minima are calculated at the same
pressure as α. Consistent with the prediction of Equation (27), we observe that the experimental
values of αmin and νmin are close to each other. This agreement is also seen in the last column of
Table 2 where the ratio νmin/αmin is in the range 0.4–1.7.

We note that the temperatures of the minima of αmin and νmin are somewhat different, nev-
ertheless the closeness of αmin and νmin implies that the Prandtl number, ν

α
, is on the order of 1

at temperatures close to the minima. In other words, the transfer of energy and momentum takes
place with the same velocity in this regime.

To illustrate the closeness of αmin and νmin further, we plot the experimental α and ν for two
noble and two molecular liquids in Figure 6 at the same pressures as in Figure 3 and observe the
closeness of the minima of two properties.

Figure 6 prompts us to think about other interesting similarities as well as differences between
kinematic viscosity and thermal diffusivity. We have already mentioned the first general similar-
ity between α and ν: they feature in the Navier-Stokes (18) and heat Equation (24) which have a
similar form. Second, the dominant contribution to thermal conductivity in the low-temperature
liquid-like regime is due to phonons as in solids. In the high-temperature gas-like regime, ther-
mal conductivity is due to particle collisions. Viscosity, on the other hand, is due to the dynamics
of individual particles and momentum they transfer in both liquid-like regime (2) and gas-like
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Table 2. Theoretical (th) and experimental (exp) val-
ues for the thermal diffusivity αmin and the kinematic
viscosity νmin at the minima.

αth
m = νth

m α
exp
m ν

exp
m νmin/αmin

Ar (20 MPa) 3.4 4.5 5.9 1.3
Ar (100 MPa) 3.4 9.3 7.7 0.8
Ne (50 MPa) 4.8 6.4 4.6 0.7
Ne (300 MPa) 4.8 11.9 6.5 0.6
He (20 MPa) 10.7 9.5 5.2 0.6
He (100 MPa) 10.7 17.9 7.5 0.4
Kr (30 MPa) 2.3 4.9 5.2 1.1
N2 (10 MPa) 4.1 4.0 6.5 1.6
N2 (500 MPa) 4.1 17.8 12.7 0.7
H2 (50 MPa) 15.2 22.8 16.3 0.7
H2 (100 MPa) 15.2 27.0 19.4 0.7
O2 (30 MPa) 3.8 5.6 7.4 1.3
H2O (70 MPa) 5.1 10.7 11.9 1.1
CO2 (30 MPa) 3.2 5.4 8.0 1.5
CO2 (90 MPa) 3.2 8.1 9.3 1.2
CH4 (20 MPa) 5.4 7.9 11.0 1.4
C2H6 (20 MPa) 3.9 7.0 12.0 1.7
CO (20 MPa) 4.1 12.0 7.7 0.6

Notes: All the quantities are displayed in units of × 108 m2/s except
from the last ratio which is dimensionless. Reproduced from Ref. [117]
with permission from the American Physical Society.

Figure 6. Experimental thermal diffusivity α (solid lines) and kinematic viscosity ν (dashed lines) for He
(20 MPa), N2 (10 MPa), Ar (20 MPa) and CO2 (30 MPa) [61]. Reproduced from Ref. [117] with permission
from the American Physical Society.

regime (3). Therefore, viscosity and thermal conductivity are set by the same process at high tem-
perature but by different processes at low temperature. Consistent with this prediction, Figure 6
shows that temperature behaviour of α and ν is more similar at high temperature as compared to
low.
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3.3. Thermal diffusivity of electrons in metals

The discussion of thermal conductivity in the previous section applies to systems where the dom-
inant contribution is related to the motion of atoms, ions or molecules. We now consider systems
where electron conductivity is important or dominant, such as metals.

Similarly to thermal diffusivity in insulating systems discussed in Section 3.1, the minimum
of electron thermal diffusivity, αe

min, corresponds to setting l = a in Equation (25): αe
min = va,

where v is the electron speed. This corresponds to the Ioffe-Regel crossover (see, e.g. Ref. [121]

and references therein). The electron velocity can be estimated as v =
√

2E
me

, where E is given by

the Rydberg energy (7). Estimating a as aB in Equation (6) as before give αe
min as

αe
min = aB

(
2ER

me

) 1
2

(30)

Using aB from Equation (6) and ER from Equation (7) in Equation (30) gives

αe
min = �

me
≈ 10−4 m2

s
(31)

Similarly to kinematic viscosity discussed in Section 2.4, αe
min is consistent with an uncertainty

relation applied to an electron located within a distance a, meva ≥ �.
Set by fundamental physical constants, the bound (31) is universal and does not depend on

the system, in contrast to (28). Comparing to the fundamental thermal diffusivity due to ions in
Equation (29), we see that αe

min is about 103 times larger. This is due to smaller electron mass as
compared to the proton mass.

We note that �

m , where m is the particle mass, has been discussed as the lower diffusivity
bound for spin transport [81,110,122–124].

Equation (30) can be compared to the experimental data in liquid metals at high temperature
where l is expected to approach a. This would be an interesting analysis to perform.

4. Minima on the phase diagram: theory and applications

The discussion of fundamental limits on viscosity and thermal conductivity in the previous two
Chapters were related to liquids and supercritical fluids. It turns out that these limits also enable
us to discuss the limits of these properties in the entire phase diagram of matter.

Let us consider to what extent the minima of νmin and αmin discussed for the liquid and super-
critical states in Chapters 2 and 3 apply to other parts of the phase diagram. The data showing
the increase of ν with temperature in the gas regime in Figure 1 is above the triple point. Below
the triple point, ν is larger than νmin. This follows from observing that (a) ν increases above the
sublimation line along the isobars and also increases along the sublimation line on lowering the
temperature due to the exponential decrease of sublimation pressure [18] (we do not consider
quantum effects), and (b) ν at the triple point is significantly larger than νmin [61]. Therefore,
νmin corresponds to the minimum for both fluids and gases (phases where viscosity operates),
including dilute low-temperature gases.

Considering now thermal diffusivity, we note that in solids α = vl is larger than αmin, for
two reasons. First, the speed of sound v is faster. Second, the phonon mean free path l is larger
than that in liquids and is typically larger than a at the UV cutoff. In gases, α = vtlp, where lp,
the particle mean free path and vt, thermal velocity, increase with temperature. At the minimum,
l ≈ a, and the speed of sound is approximately equal to the thermal speed of particles at the
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Frenkel line [66]. Hence α = vl increases in both solids and gases, and the minimum of α, αmin,
applies to all three states of matter.

We therefore see that αmin and νmin represent minima on the phase diagram. However, αmin and
νmin behave differently in close proximity to the critical point. Indeed, viscosity diverges at the
critical point [125], and νmin increases close to the critical point as a result. Therefore, νmin gives
the global minimum on the entire phase diagram. On the other hand, the isobaric heat capacity
diverges much faster than κ [126]. As a result, α at the critical point tends to zero. Therefore,
αmin gives the minimum on the phase diagram of matter except in the close vicinity of the critical
point.

As far as dynamic viscosity η and thermal conductivity κ are concerned, their minima operate
in the liquid and supercritical parts of the phase diagram only, including the critical point where
they increase. In the gas phase, η and κ can be arbitrarily small at low temperature. The same
applies to κ in solids where it tends to zero due to heat capacity becoming zero at low temperature
and where the phonon mean free path saturates to a constant value set by either system size or
scattering from defects.

Apart from ascertaining theoretical minima of the phase diagram, the fundamental limits of
viscosity and thermal conductivity have practical implications. For example, designing a low-
viscosity liquid in lubricating applications benefits from knowing that viscosity can not be lower
than the fundamental bound. On the other hand, if viscosity is substantially larger than the bound,
there is room for improvement which can be pursued. Similarly, low-viscosity and associated
high diffusion is important in increasing deployment of supercritical fluids such as CO2 and H2O
in cleaning, extracting and dissolving processes including environmental and green applications
[21,66,127–130]. It was noted that improving the fundamental knowledge of the supercritical
state properties is important for scaling up, widening, and increasing the reliability of these
applications (see, e.g. Refs [127,131–135]).

Similarly, the lower bound for thermal conductivity and diffusivity is informative when
designing a system with superior thermal insulation properties. Small thermal conductivity is
also important in other areas such as enhancing the thermoelectric effect. The figure of merit
measuring the efficiency of thermoelectricity is inversely proportional to thermal conductivity.
Therefore, the minimal thermal conductivity gives the maximal possible figure of merit, keeping
all other factors unchanged. As mentioned in Section 3.1, the exceptionally low thermal con-
ductivity reported in Ref. [120] for the solid with high thermoelectric figure is still larger than
theoretical lower bounds.

5. Elastic properties

5.1. Elastic moduli

A convenient starting point of the discussion of elastic moduli is to write the system energy as
[136]

E = E0f

(
V

V0

)
(32)

where E0 and V0 are energy and volume at zero temperature and pressure and f is the function
showing the energy dependence on volume.

Equation (32) gives the bulk modulus K = V ∂2E
∂V 2 as

K = E0

V0

V

V0
f ′′

(
V

V0

)
(33)
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At zero pressure, the bulk modulus is

K0 = E0

V0
f ′′
0 (34)

Early studies have showed that f ′′
0 is close to 1 for systems with covalent bonding [136].

Later work ascertained that f ′′
0 is on the order of 1 for a wider class of solids, including metallic,

molecular and noble systems [137,138]. This implies that the bulk modulus and related elastic
properties are largely governed by the bonding energy density, or density of valence electrons:

K0 ≈ Eb

a3
(35)

where Eb is the bonding energy.
In diamond, this density is high due to fairly small ionic radius and four valence electrons

[137,138]. This gives diamond its uniquely large modulus of about 450 GPa.
If the bulk modulus is given by the density of cohesive energy, we can use Equation (35) to

estimate the “fundamental bulk modulus” Kf in terms of fundamental physical constants as [139]

Kf = ER

a3
B

≈ 147 Mbar (36)

where ER is the Rydberg energy in Equation (7) and aB is the Bohr radius in Equation (6).
We note that elastic moduli have the dimension of pressure, and Kf in Equation (36) is often

called the atomic pressure unit. At pressures above Kf , effects related to the overlap of inner
electronic shells come into play, at which point solids metallise and become similar to each other
and ultimately to the Thomas-Fermi plasma.

From Equations (7) and (6), we see that Kf depends on fundamental physical constants me, e
and � as

Kf ∝
(

m2
ee5

�4

)2

(37)

where we dropped numerical factors.
Kf of about 147 Mbar represents an upper bound for the bulk modulus of condensed matter

systems (solids and liquids) because aB ≈ 0.5 Å in (36) is smaller than the interatomic separation
in real systems and the Rydberg energy corresponds to large cohesive energy.

As a rough estimate, we can see what Equation (36) predicts for diamond where the inter-
atomic separation is about 3 times larger than aB. According to Equation (36), this gives the bulk
modulus smaller than Mf by a factor of 33, or about 540 GPa, close to that in diamond.

5.2. Low-dimensional systems: surface tension and atomic force

Similarly to elastic moduli, we can consider the surface tension as the surface energy density
σ = E

r2 . Taking E = ER and r = aB as before gives

σ = ER

a2
B

≈ 780
N

m
(38)

or

σ ∝ m3
ee8

�6
(39)

in terms of fundamental constants.
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Compared to the common surface tension in liquids, Equation (38) gives a large value. For
example, σ in water and mercury bordering air is 0.07 and 0.5 N

m , respectively. The meaning
of σ in Equation (38) is that gives maximally possible surface tension, and a fair comparison
is with elastic moduli and mechanical properties of two-dimensional solids. The stiffest two-
dimensional solid known, graphene, has σ = 340 N

m and the averaged breaking strength of 55 N
m

[140] (the breaking strength can be estimated as the elastic moduli divided by 2π [141,142]).
This σ is of the same order as the upper theoretical bound (38) and conforms to this bound.

We can also consider a one-dimensional chain and introduce a theoretical limit for the elastic
force f acting as one-dimensional analogue of the elastic modulus as:

f = ER

aB
≈ 41 nN (40)

or

f ∝
(

mee3

�2

)2

(41)

in terms of fundamental constants.
Similarly to using graphene to compare the theoretical prediction of two-dimensional elas-

ticity in terms of fundamental constants, we can look to compare f in Equation (40) to
one-dimensional structures of carbon, carbyne. Experiments in carbyne report f = 8 − 12 nN
[143,144]. This is of the same order as the theoretical upper bound (40) and conforms to this
bound.

This review is largely related to three-dimensional condensed matter systems. It is neverthe-
less interesting to note that low-dimensional systems and their derivatives can offer a particularly
simple relationship between system properties and fundamental physical constants. An interest-
ing result comes again from graphene: the light absorption coefficient of a single graphene layer
is theoretically predicted to be πα, where α is the fine structure constant we discussed earlier
[145], in agreement with experimental results [146].

We also note that we do not consider effects directly related to quantisation in this review. If
a property changes in quanta (e.g. resistivity quanta in the quantum Hall effect or magnetic flux
quanta in superconductors), bounds related to the smallest quantum number can trivially emerge
too. The nature of these bounds is different from those considered in this review: we discuss
bounds whose origin is unrelated to quantisation.

6. Speed of sound

6.1. The upper bound

Our last case study in this review is the speed of sound in condensed matter phases, v, and its
upper limit in terms of fundamental physical constants.

There are two approaches in which v can be evaluated. The first approach involves elasticity
involving Equation (35).

The longitudinal speed of sound is

v =
(

M

ρ

) 1
2

M = K0 + 4

3
G (42)
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where G is the shear modulus and ρ is the density. As discussed in Section 5.1, the bulk modulus
is governed by the density of cohesive energy in Equation (35), where the proportionality coeffi-
cient f = f ′′

0 is experimentally found to be in the range 1–4 [137,138]. The same data implies the
proportionality coefficient between M and E

a3 in the range of about 1–6. Combining v = (M
ρ

)
1
2

and M = f Eb
a3 gives v = f

1
2 ( E

m )
1
2 , where m is the mass of the atom or molecule, and we used

m = ρa3. The factor f
1
2 is about 1-2 and can be dropped in an approximate evaluation of v. Then,

v =
(

E

m

) 1
2

(43)

We now recall that the bonding energy in condensed phases is given by the Rydberg energy in
Equation (7). Using E = ER from Equation (7) in (43) gives

v

c
= α

( me

2m

) 1
2

(44)

where α = 1
4πε0

e2

�c is the fine structure constant.
The second approach to evaluating the speed of sound involves the vibrational properties

of the system. The longitudinal speed of sound, v, can be evaluated as the phase velocity in
the longitudinal dispersion curve ω = ω(k): v = ωD

kD
, where ωD and kD are Debye frequency and

wavevector, respectively. Using kD = π
a , where a is the interatomic or inter-molecule separation,

gives

v = 1

π
ωDa (45)

Using the ratio between the phonon energy, �ωD, and E in Equation (8) in Section 2.3 in
Equation (45) gives

v = Ea

π�

(me

m

) 1
2

(46)

v in (44), up to a constant factor, is obtained by using a = aB from (6) and E = ER from (7)
in (46). Alternatively, the same result can be found by using E = �

2

2mea2 (11) and a = aB (6) in (46).
Compared to the first approach, the second approach based on vibrational properties involves

additional approximations, including evaluating v from the dispersion relation in the Debye
model, using a = aB in (6) and the ratio between the phonon and bonding energies (8). For this
reason, we focus on the result from the first approach, Equation (44).

In Equation (44), me characterises electrons, which are responsible for the interactions
between atoms. The electronic contribution is further reflected in the factor αc (αc ∝ e2

�
), which

is the electron velocity in the Bohr model. We note that v does not depend on c. The reason for
writing the fraction v

c in terms of α is two-fold. First, this ratio is convenient and informative,
similarly to the ratio of the Fermi velocity and the speed of light vF

c commonly used. Second, it
is α (together with me

mp
) that is given fundamental importance and is finely tuned to enable the

synthesis of heavy elements [1] and, therefore, the existence of solids and liquids where sound
can propagate to begin with.

Similarly to the viscosity minimum νmin and fundamental viscosity νf in Section 2.3, the
derivation of Equation (44) involves more than dimensional analysis. First, the dimensional anal-
ysis alone is consistent with re-writing Equation (44) as v

c = f1(α)f2(
me
m ), where f1 and f2 are

arbitrary functions. This gives any desired value for the speed of sound. Instead, the derivation of
Equation (44) involves several physical insights not available in the dimensional analysis alone.
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This includes the experimental result of f ′′
0 being close to 1 in Equation (34), using the ratio �ωD

E ,
based on the physical model, in Equation (46), and so on. These steps are physically guided and
incorporate more information that would be available from purely dimensional considerations.

m in (44) characterises atoms involved in periodic motion during sound propagation. The
scale of m is set by the proton mass mp: m = Amp, where A is the atomic mass. Recall that aB

in (6) and ER in (7) are characteristic values derived for the H atom. Setting A = 1 and m = mp

in (44) gives the upper bound of v in (44), vu, as [147]:

vu = α

(
me

2mp

) 1
2

c ≈ 36, 100
m

s
(47)

We observe that vu depends on fundamental physical constants including the dimensionless
fine structure constant α and the proton-to-electron mass ratio. We have discussed the importance
of these two constants earlier in this review, including in the Introduction.

Combining Equations (44), (47), and m = Amp gives

v = vu

A
1
2

(48)

Before discussing Equation (44) and its implications, Equations (47)–(48), we note that the
speed of sound is governed by the elastic moduli and density which substantially vary with bond-
ing type: from strong covalent, ionic, or metallic bonding, typically giving a large bonding energy
to intermediate hydrogen-bonding, and weak dipole and van der Waals interactions. Elastic mod-
uli and density also vary with the particular structure that a system adopts. Furthermore, structure
and bonding type are themselves inter-dependent: covalent and ionic bonding result in open and
close-packed structures, respectively [148]. As a result, the speed of sound for a particular system
can not be predicted analytically and without the explicit knowledge of structure and interactions.
This is similar to other system-dependent properties such as viscosity or thermal conductivity
discussed in Sections 2 and 3 but is different to other properties such as the classical energy and
specific heat which are universal in the harmonic approximation [18]. Nevertheless, the depen-
dence of v on m or A in Equation (48) can be studied in a family of elemental solids. Elemental
solids do not have confounding features of compounds related to mixed bonding between dif-
ferent atomic species, including mixed covalent-ionic bonding between the same atomic pairs as
well as different bonding types between different pairs.

6.2. Comparing to experiments

The implication of Equation (44) leading to the upper bound (47) is Equation (48). We can com-
pare Equation (48) to experiments. We plot the available data of v as a function of A for 36
elemental solids [149–151] in Figure 7, including semiconductors and metals with large bonding
energies. Equation (48) is the straight line in Figure 7 ending in the upper theoretical bound (47)
for A = 1. The linear Pearson correlation coefficient calculated for the experimental data (log A,
log v) is −0.71. Its absolute value is slightly above that notionally separating moderate and strong
correlations [152]. We also find that the ratio of calculated and experimental v is in the range
0.6–2.4, consistent with the range of f

1
2 approximated by 1 in the derivation of Equation (43).

The dashed line in Figure 7 shows the fit of the experimental data points to the inverse square
root function predicted by Equation (48) and lies very close to Equation (48). The fitted curve
gives the intercept at 37,350 m

s . This is in about 3% agreement with the upper bound vu in (47).
This indicates that the numerical coefficient in Equation (44), which is subject to an approxima-
tion as mentioned earlier gives good agreement with the experimental trend. The agreement of
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Figure 7. Experimental longitudinal speed of sound [149–151] in 36 elemental solids (blue bullets) as a
function of atomic mass. The solid line is the plot of Equation (48): v = vu

A
1
2

. The red diamond shows

the upper bound of the speed of sound (47). The dashed line is the fit to the experimental data points. In
order of increasing mass, the solids are: Li, Be, B, C, Na, Mg, Al, Si, S, K, Ti, Mn, Fe, Ni, Co, Cu, Zn,
Ge, Y, Nb, Mo, Pd, Ag, Cd, In, Sn, Sb, Ta, W, Pt, Au, Tl, Pb, Bi, Th and U. From Ref. [147]. Copy-
right: the Authors, some rights reserved; exclusive licensee AAAS. Distributed under a Creative Commons
Attribution NonCommercial License 4.0 (CC BY-NC).

Equation (48) with experimental data supports Equation (44) and its consequence, the upper limit
vu in Equation (47).

We can also see that vu agrees with a wider experimental set. In Figure 8, we show experi-
mental v [149–151] in 133 systems, including elementals systems and compounds. As expected,
the experimental v are smaller than the upper theoretical bound vu in (47). vu is about twice as
large as v in diamond, the highest v measured at ambient conditions (the in-plane speed of sound
in graphite is slightly above v in diamond [153]).

Equation (48) can be used to roughly predict the average, or characteristic speed of sound
v in condensed matter systems. A

1
2 which, according to (48) is relevant for v, varies across the

periodic table in the range of about 1-15, with an average value of 8. According to (48), this
corresponds to v ≈ 4, 513 m

s . This is in 16% agreement with 5,392 m
s , the average over elemental

solids in Figure 7 and in 14% agreement with 5,267 m
s , the average over the wider range of solids

in Figure 8.
This explains the characteristic values of v and their average. Although v depends on the

system in (48), the scale of v is defined by Equation (47) which is set by fundamental physi-
cal constants. Earlier in this review, we have seen that characteristic values of other properties,
including viscosity, thermal diffusivity and elasticity are similarly set by fundamental constants.

Figure 8 includes the experimental v of room-temperature liquids with typical v in the range
1000–2000 m

s . v in high-temperature liquid metals such as Al, Fe, Mg, and Ni is in the higher
range 4000–5000 m

s [67]. We see that v in liquids satisfy the bound vu, similarly to solids. We note
that the evaluation of v and vu applies to liquids with cohesive states where molecular dynamics
includes solid-like oscillatory components below the Frenkel line [66] discussed in Section 2. In
this regime, v is set by the elastic moduli as in solids albeit taken at their high-frequency (short-
time) values [51] so the derivation in Equations (43)–(47) applies. On the other hand, at high
temperature and/or low density above the Frenkel line, cohesive states are lost and Equations (7)
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Figure 8. Experimental longitudinal speed of sound [149–151] in 124 solids (circles) and 9 liquids [149]
(diamonds) at ambient conditions as a function of the system number. Solids are: Al, Be, Brass, Cu, Dura-
lumin, Au, Fe, Pb, Mg, Diamond, Ni, Pt, Ag, Steel, Sn, Ti, W, Zn, Fused silica, Pyrex glass, Lucite,
Polyethylene, Polyesterene, WC, B, Mo, NaCl, RbCl, RbI, Tl, Li, Na, Si, S, K, Mn, Co, Ge, Y, Nb,
Mo, Pd, Cd, In, Sb, Ta, Bi, Th, U, LiF, LiCl, BeO, NH4H2PO4, NH4Cl, NH4Br, NaNO3, NaClO3, NaF,
NaBr, NaBrO3, NaI, Mg2SiO4, α-Al2O8, AlPO4, AlSb, KH2PO4, KAl(SO4)2, KCl, KBr, KI, CaBaTiO3,
CaF2, ZnO, α-ZnS, GaAs, GaSb, RbF, RbBr, Sr(NO3)2, SrSO4, SrTiO3, AgCl, AgBr, CdS, InSb, CsCl,
CsBr, CsI, CsF, Ba(NO3)2, BaF2, BaSO4, BaTiO3, TlCl, Pb(NO3)2, PbS, Apatite, Aragonite, Barite, Beryl,
Biotite, Galena, Hematite, Garnet, Diopside, Calcite, Cancrinite, Alpha-quartz, Corundum, Labradorite,
Magnetite, Microcline, Muscovite, Nepheline, Pyrite, Rutile, Staurolite, Tourmaline, Phlogopite, Chromite,
Celestine, Zircon, Spinel and Aegirite. Liquids are: Mercury, Water, Acetone, Ethanol, Ethylene, Benzene,
Nitrobenzene, Butane and Glycerol. See Refs. [149–151] for system specifications, including density and
symmetry groups. From Ref. [147]. Copyright: the Authors, some rights reserved; exclusive licensee AAAS.
Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

and (6) and the derivation of v do not apply. In this regime, the moduli are related to the kinetic
energy of molecules rather than interactions and bonding energy, and v starts to increase with
temperature and loses its universality. Above the Frenkel line [66] where the molecular motion
is purely diffusive, v is equal to the thermal speed of molecules as in a gas.

In Sections 2 and 3, we have discussed fundamental bounds of ν and α and later saw that
they represent the bounds for all states of matter, including solids and gases. In this regard, it is
interesting to note that an expression similar to (43) was earlier obtained by evaluating the elastic
modulus using the liquid state theory and applied to liquid metals [154]. The speed of sound
was also evaluated in the theory of metals using the ionic plasma frequency and subsequently
accounting for the conduction electrons screening. This results in the Bohm-Staver relation v ∝
(me

m )
1
2 vF, where vF is the Fermi velocity [68], and hence v ∝ 1

A
1
2

as in Equation (48). These and

other relations derived for the liquid state give a fairly good account of the experimental sound
velocity in metallic liquids [67,154].

We make three remarks about the calculated v and its bound. First, this derivation involves
approximations as mentioned earlier, which may affect the numerical factor in Equations (44)
and (47). However, the characteristic scale of v in (44) and its upper bound (47) is set by funda-
mental physical constants. The second remark is similar to the disclaimer we made with regard to
liquids in Section 2: Equation (7) as well as Equations (44)–(46) used in the second approach to
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derive v assume valence electrons directly involved in bonding and hence strongly-bonded sys-
tems, including covalent, ionic and metallic systems. Although bonding in weakly-bonded solids
such as noble, molecular and hydrogen-bonded solids is also electromagnetic in origin, weak
dipole and van der Waals interactions result in smaller E [72] and smaller v as a result. Therefore,
the upper bound vu in Equation (47) applies to weakly-bonded systems too.

The upper bound in Equation (47) corresponds to solid hydrogen with strong metallic bond-
ing. Although this phase only exists at megabar pressures [155,156] and is dynamically unstable
at ambient pressure where molecular formation occurs, v can be calculated in atomic hydrogen
using quantum-mechanical calculations. This carries an additional interest due to research into
the properties of atomic hydrogen at high pressure (see, e.g. Refs. [155–157]), although the speed
of sound in these phases was not discussed and remains unknown. The quantum-mechanical
calculation of v shows good agreement with Equation (47) [147].

We make several remarks related to previous work involving bounds on the speed of sound.
It was noted that thermal diffusivity of insulators does not fall below a threshold value given by
the product of v2 and the Planckian time [76]. Later work linked the upper bound on the speed
of sound to the melting velocity related to melting temperature and Lindemann criterion [80]. In
hadronic matter, the upper bound of the speed of sound was conjectured to be [158,159]):

vu = c√
3

(49)

Later work [160–162] discussed the bound (49) and its violations using different models.
Comparing the bound (49) with (47), we see that the bound (47) is smaller due to small coupling
constant α and the electron-to-proton mass ratio. In hadronic matter with strong coupling and
particles with the same or similar masses, these factors become close to 1, in which case vu

c in
Equation (47) becomes closer to the conjectured limit.

We finally note that the upper bound for v plays a role in thermodynamic properties too.
Indeed, the low-temperature entropy and heat capacity per volume in solids are

C

V
= 2π2

5(�u)3
T3

S

V
= 2π2

15(�u)3
T3 (50)

where u is the average speed of sound [18].
Hence, the upper bound for u gives the smallest possible entropy and heat capacity at a given

temperature.

7. Summary: fundamental constants and physical theories

Testing and validating a physical theory and comparing it to an experiment involves different
types of numbers, and in this sense Equation (50) serves as a good representative example. There
are ordinary numbers such as “2” or “π” in Equation (50). Then there is a family of exter-
nal parameters such as pressure, temperature, external field and so on. In Equation (50), this
is represented by temperature T. Another type of parameters are fixed by system properties. In
Equation (50), this is the speed of sound u. Parameters like this are different from free adjustable
parameters. We prefer not to have those in our theories if possible, not least because it may be
hard to judge whether the theory is valid if parameters are freely adjustable. We can often fit
experimental data with a fairly small number of adjustable parameters and hence can’t decide
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which theory is the correct one, remaining no wiser as to what physical mechanism really oper-
ates. On the other hand, a parameter fixed by system properties has no such flexibility. If we
know u from some other experiment or simulation, Equation (50) unambiguously predict heat
capacity and entropy at a given temperature. This is what physics is considered to be about: one
view holds that the essence of every physical theory is to predict a future experiment on the basis
of a previous one [163] or, in other words, provide a relationship between different properties.

Finally, there is another class of parameters in a theory: fundamental physical constants. In
Equation (50), this is �. Being the “barcodes of ultimate reality” [1], these are very special param-
eters. They too are fixed by system properties as in the earlier example, with the proviso that the
system is the Universe.

Accordingly, a theory where an observable is expressed in terms of fundamental constants
only (as well as ordinary numbers) is a special type of theory because it directly links the property
in question to the Universe properties.

By design, such a theory does not address effects related to variation of external parameters
(pressure, temperature and so on). Applied to a range of systems, such a theory often makes
approximations which is inevitable in view of structural, chemical and bonding variety of con-
densed matter phases. Once these are made, the theory and its results allow no further flexibility
or leeway. With this disclaimer, we summarise what we can learn from such a theory below.

We have seen that fundamental physical constants can usefully provide a bound on a physical
property. We have discussed how this works for properties which are quite complicated to be
amenable to a general theoretical treatment including liquid viscosity and thermal conductivity.

We found that � interestingly enters all expressions for bounds on macroscopic properties.
This includes the range of external parameters where systems are considered classical. Viscosity
and thermal diffusivity bounds are additionally governed by me and mp.

We have seen that comparing the observed property to its fundamental bound informs us
about the dynamical regime the system is in. For example, if viscosity or thermal diffusivity are
close to its lower bound νmin (αmin), we are able to conclude how particle move, namely that they
are close to the dynamical crossover between the liquidlike and gaslike motion. This contains
quite a lot of information which is not at all easy to ascertain on the basis of experiments or even
modelling, and yet we are able to make this assertion on the basis of one measured number only:
νmin or αmin.

The value of bounds in terms of fundamental physical constants also provide a consistency
check for a theory because it anchors the limiting values predicted by the theory. It also serves
as a useful guide for a future theory, as illustrated by the discussion of quantum liquids and
microscopic theory of liquid He which is yet to be developed.

Knowing the bounds from fundamental constants is also useful in systems where high-
pressure and high-temperature properties have not been measured yet due to high melting points,
such as molten salts or liquid metals.

From the practical standpoint, the fundamental bounds are useful in a number of ways. For
example, they inform us that we should not spend an effort to design a lubricating fluid with
viscosity significantly below the lower viscosity bound because this would not be allowed by
the fundamental constants. On the other hand, if the measured values of viscosity or thermal
conductivity are well above the bound, then there is a room for improvement that can be pursued.

In addition to setting the bounds, fundamental constants explain the observed characteristic
values of several important properties of condensed matter in ways not anticipated before. Recall
the calculated average value of the speed of sound in solids of about 5 km/s. By relating this
value to fundamental constants, we can understand why it is 5, rather than, for example, 50 or
500 km/s. Similarly, we can understand why viscosity, thermal conductivity and elastic properties
of many systems of interest take the values they do. This understanding is similarly provided by



506 K. Trachenko

fundamental physical constants. One of the main points of this review was to show how this
happens.

The observation that fundamental physical constants largely govern water viscosity raises
more general and far-reaching questions related to our place in the Universe: what values of these
constants make water-based life possible? What happens to liquid-based life forms if fundamental
physical constants change, and how finely-tuned do these constants need to be to remain bio-
friendly? This adds another, biochemical, layer to the discussion of the anthropic principle [1–
3,6,8–10] and invites an inter-disciplinary research.

Some of the fundamental bounds we discussed in this review were known, whereas others
are fairly new and unexpected. There seems to have been no sustained work in this area, and this
review may encourage further thinking and discovery of new fundamental bounds.
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